Data Sheet

RISH CON - M
RISH CON M-40/ M-04/ M-22
Application:

The RISH CON - M transducer is used to measure and convert parameter of Three-phase 3W/4W AC power network with balanced or unbalanced system.

It ensures that the measurement and conversion of measured values into standard analog current signals. Relay outputs signal the overflow of the selected quantity, and the pulse output can be used for the consumption monitoring of the 3-phase active energy.

Salient Features:

- True RMS measurement.
- Fully onsite programmable input PT & CT ratio.
- Detection and signaling of incorrect phase sequence.
- THD Measurement.
- Programmable parameters through the RS-485 interface or USB when using the free eCon configuration software.
- Onsite selectable analog output range (0...20mA/4...20mA/-20...+20mA).
- Fast and easy installation on DIN RAIL or onto a wall or in a panel using optional screw hole bracket.
- Connection Terminal: Conventional Screw type.

Product Features:

Measuring Input:
AC Voltage/Current input signal, sine wave or distorted wave form.

Analog Output:
Analog output which can be set between -20mA...20mA onsite. Admissible overflow on analog output: 20% of lower and upper value.

Programmable PT, CT Ratio:
The Transducer can be programmed onsite using through RS 485 or USB port..

LED Indication:
LED indication for power on, RS485 transmission, reception and alarm switching.

RS485 Communication:
RS485 communication is available. For reading measured parameter & onsite configuration of input/output.

USB Communication:
RS485 communication is available. For reading measured parameter & onsite configuration of input/output.

Energy Measurement:
Tetraquadrant energy measurement (Ep+, Ep-, EqL, Eqc).

Mean Active Power:
Measurement of 15, 30 or 60 minutes’ mean active power (synchronization by an internal clock or a walking window) with the archiving function of 1000 last samples.

Galvanic Isolation:
Transducer output signals are galvanically isolated from the input signal.

Pulse constant of OC type output:
5000-20000imp./KWh, independently on setting of ratios Ku, Ki

Alarm Indications:
The alarm indication can be set for measured input parameter.
Technical Specifications:

Measuring Ranges and Admissible Basic Errors

Table 1

<table>
<thead>
<tr>
<th>Measured quantity</th>
<th>Measuring range</th>
<th>L1 L2 L3</th>
<th>Σ</th>
<th>Basic error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current 1/5A L1...L3</td>
<td>0.02...6 A~</td>
<td>● ● ●</td>
<td></td>
<td>±0.2%</td>
</tr>
<tr>
<td>Voltage L-N</td>
<td>57.7V~ 230.0V~</td>
<td>● ● ●</td>
<td></td>
<td>±0.2%</td>
</tr>
<tr>
<td>Voltage L-L</td>
<td>100.0V~ 400.0V~</td>
<td>● ● ●</td>
<td></td>
<td>±0.5%</td>
</tr>
<tr>
<td>Frequency</td>
<td>47.0...63.0 Hz</td>
<td>● ● ●</td>
<td></td>
<td>±0.2%</td>
</tr>
<tr>
<td>Active power</td>
<td>-1.65 kW...1.4 W...1.65 kW</td>
<td>● ● ●</td>
<td></td>
<td>±0.5%</td>
</tr>
<tr>
<td>Reactive power</td>
<td>-1.65 kv ar...1.4 var...1.65 kvar</td>
<td>● ● ●</td>
<td></td>
<td>±0.5%</td>
</tr>
<tr>
<td>Apparent power</td>
<td>1.4 VA...1.65 kVA</td>
<td>● ● ●</td>
<td></td>
<td>±0.5%</td>
</tr>
<tr>
<td>PF factor</td>
<td>-1...0...1</td>
<td>● ● ●</td>
<td></td>
<td>±0.5%</td>
</tr>
<tr>
<td>Tangens</td>
<td>-1.2...0...1.2</td>
<td>● ● ●</td>
<td></td>
<td>±1%</td>
</tr>
<tr>
<td>Cosinus</td>
<td>-1...1</td>
<td>● ● ●</td>
<td></td>
<td>±1%</td>
</tr>
<tr>
<td>Angle between U and I</td>
<td>-180°...180°</td>
<td>● ● ●</td>
<td></td>
<td>±0.5%</td>
</tr>
<tr>
<td>Input active energy</td>
<td>0...99 999 999.9 kWh</td>
<td>● ● ●</td>
<td></td>
<td>±0.5%</td>
</tr>
<tr>
<td>Developed active energy</td>
<td>0...99 999 999.9 kvarh</td>
<td>● ● ●</td>
<td></td>
<td>±0.5%</td>
</tr>
<tr>
<td>Reactive inductive energy</td>
<td>0...99 999 999.9 kWh</td>
<td>● ● ●</td>
<td></td>
<td>±0.5%</td>
</tr>
<tr>
<td>Reactive capacitive energy</td>
<td>0...99 999 999.9 kvarh</td>
<td>● ● ●</td>
<td></td>
<td>±0.5%</td>
</tr>
<tr>
<td>THD in the range 10...120% U I; 48...52 Hz; 58...62 Hz</td>
<td>0...100%</td>
<td>● ● ●</td>
<td></td>
<td>±5%</td>
</tr>
</tbody>
</table>

Caution! For correct current measurement, the presence of voltage with the value higher than 0.05 Un is required at least on one phase.

Power Consumption:
- in supply circuit ≤ 10 VA
- in voltage circuit ≤ 0.05 VA
- in current circuit ≤ 0.1 VA
Analog Outputs: 0, 2 or 4 programmable outputs:
- 20...0...+20 mA, R load: 0..750 Ω
 Accuracy: 0.2%, Response Time: 3sec.
 (Note: For admissible overflow of 20% on analog output
 R load = 0..600 Ω)

Relay Outputs: 0, 2 or 4 relays, voltageless NO contacts
load capacity 250 V~/ 0.5 A~

Serial Interface: RS-485: address 1...247;
 mode: 8N2, 8E1, 8O1, 8N1;
 baud rate: 4.8, 9.6, 19.2, 38.4 kbit/s,
 USB: 1.1 / 2.0, address 1;
 mode 8N2; baud rate 9.6 kbit/s,

Transmission Protocol: Modbus RTU
 Response time: 500 ms

Energy Pulse Output: output of OC type, passive
 acc. to EN 62053-31

Pulse Constant of OC Type Output: 5000 -20000 imp./kWh, independently
 on settings ratios Ku, Ki

Ratio of the Voltage Transformer Ku: 0.1..... 4000.0

Ratio of the Current Transformer Ki: 1...10000

Protection Degree:
- for the housing IP 40
- from terminals IP 20

Weight: 0.45 kg

Dimensions: 122.5 x 66.0 x 106.5mm

Mounting position: Rail mounting/wall mounting

Reference and Rated Operating Conditions:
Supply voltage 85...253 V a.c. 40...400 Hz;
90...320 V d.c.
or 20...40V a.c. 40...400 Hz;
20...60 V d.c.
Input Signal:
- Voltage: 0...0.05...1.2 Rated Value (Un)
- Current: 0...0.005...1.2 Rated value (In)
- Frequency: 47...63 Hz
- Power factors (Pf): -1...0...1 (0 Lag...1...Lead 0)
- Tangens (\(\tan(\phi)\)): -1.2...0...1.2 (0...0.1...1.2In and 0...0.1...1.2Un) sinusoidal (THD ≤ 8%)

Analog outputs: -24...-20...0...+20...24 mA

Ambient temperature: -10...23...+55°C

Storage temperature: -30...+70°C

Relative humidity: 25...95% (inadmissible condensation)

Admissible peak factor:
- Current: 2
- Voltage: 2

External magnetic field: 0..40...400 A/m

Short duration overload 5 sec.:
- Voltage inputs: 2Un (max. 1000 V)
- Current inputs: 10 In

Work position: any

Preheating time: 5 min.

Additional errors:
In percentage of the basic error:
- From frequency of input signals: < 50%
- From ambient temperature changes: < 50%/10°C
- For THD > 8%: < 100%

Standards Fulfilled by the Meter

Electromagnetic Compatibility:
- Noise immunity: acc. to EN 61000-6-2
- Noise emission: acc. to EN 61000-6-4
Safety Requirements:

Isolation between circuits

1min. (EN 61010-1)
3110V DC, All terminals versus outer surface
3110V DC, Input versus all other circuit
3110V DC, Auxiliary supply versus outer surface and all other circuit.
(Note - No isolation between the analog outputs)

Installation category

III

Pollution level

2

Maximal phase-to-earth voltage

- for supply and measurement circuit 300 V
- for other circuits 50 V

Altitude above sea level

< 2000 m

LED Indication

Table 2

<table>
<thead>
<tr>
<th>LED</th>
<th>State</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Green continuous</td>
<td>Aux Supply healthy condition and calibration ok</td>
</tr>
<tr>
<td>Rx</td>
<td>Pulsing</td>
<td>Data reception through RS485</td>
</tr>
<tr>
<td>Tx</td>
<td>Pulsing</td>
<td>Data transmission through Rs485</td>
</tr>
<tr>
<td>AL1....AL4</td>
<td>Continuous ON</td>
<td>Alarm ON</td>
</tr>
</tbody>
</table>

Terminal Details

Fig 2. Terminal Details
External connections:

Direct measurement in a four-wire network.

Measurement with the use of current transformers in a four-wire network.

Semidirect measurement in a three-wire network.

Direct measurement in a three-wire network.
Indirect measurement with the use of 3 current transformers and 2 or 3 voltage transformers in a four-wire network.

Indirect measurement with the use of 2 current transformers and 2 or 3 voltage transformers in a three-wire network.

Fig 3. Electrical connections
Programming of transducer

The eCon software is destined for the configuration of transducer. One must connect the transducer to a PC computer through the RS485 converter, if the communication will be performed using Rs485 interface or directly through the USB.

Ordering Information

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISH CON-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current input In:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A (X/1)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 A (X/5)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage input (phase/Phase-to-phase) Un:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 phase 57.7/100 V</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 phase 230/400 V</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply voltage:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85..253 V a.c., 90..320 V d.c.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-40 V AC/20-60 V DC</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output type:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without analog outputs, 4 relays</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 analog outputs, 2 relays</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 analog outputs, without relays</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Resistance (R_L):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 Ohm</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 Ohm</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model Types

<table>
<thead>
<tr>
<th>Model Code</th>
<th>Model Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISH CON M - 40</td>
<td>4 Analog Output type</td>
</tr>
<tr>
<td>Model Code M - 04</td>
<td>4 Relay Output type</td>
</tr>
<tr>
<td>Model Code M - 22</td>
<td>2 Analog 2 Relay Output type</td>
</tr>
</tbody>
</table>

Dimensions

- RISH CON-M Transducer: 122.5mm x 66.5mm x 95.5mm
- Software CD
- USB/RS485

Fig 4. Configuration of the transducer

Fig 5. (All dimensions are in mm.)