Delta POWER

DELTA POWER - DIGITAL MULTIFUNCTION INSTRUMENT Programmable Multi-function Digital Panel Meter Installation \& Operating Instructions

```
Section Contents
    Contents
        Measurement Reading Screens
            Programming
            *.1 Passwor Protection
            l.2.1 System Type
            lu}\mp@subsup{}{3.2.2}{3.2
            3.2.4 Potential Transormerm Secondary valu
            32.5 Current Transformer Secondary value
            3.2.6
            3.2.7 Auto Scrolling
            3.2.8.9 Number of poles
            3.2.10 Trip Point selection
            3.2.11 Hysteresis of relay reset
            Run hour
            Run hour
            Number of interuptions
            Negative sign indica
            8.1 EMC Installation Requirem
            .1 ECase Dimensions and Panel Cut-ou
            8.3 Wiring 
            8.5 Fusing
            8.6 Earth/Ground Connections
9. Connection Diagrams
            Optional Pluggable
            Limit Suitch
            Connection for Optional Relay Output
```

1. Introduction

The Delta Power is a panel mounted $99 \times 96 \mathrm{~mm}$ DIN Quadratic Digital Panel Meter, which

 The instrument integrates accurate measurement technology (All Voltages \& current

The Delta power can be configured and Programme
on site for the following :PT Primary. PT Secondary

The front 1 and
The front panel has four push buttons for user
interface to scroll through the avialable param
interace to scrol through the avaiable
These four keys has tunction as ofolow:

1. V: Selects \& Scrolls through Voltage parameters

Display
2.A. Select phase Current Parameters Display
3. P: Select \& Scrolls phase \& system Powe
parameters : A Active opwer, apporent power reactive
power, phase angle, power factor, then system Apparent. powert phase angle, powe factor, then system Apparent,
Reacaive, Aftive Power Phase angle, Power factor and
Back to Phase active power Reactive, Atative Power, Phat
Back to Phase active powe
4. Sys : Select \& Scroll through System parameters: Voltage-Current-Frequency, Hivalues of system voltage and current, min values of system
Oltage and current, RPM, run Hour, ON hour and no. of interuptions and back to system Voltage and current, RPM, run Hour
Woltage-Current Frequency screen
The Delta power come with 14 mm display and units annunciated from back side, The Detta power come with $14 m m$ display and units annunciated from back side,
Which enales totake weading from long distance. The problem with conventional LED
annunciators is is overcome with the Detia Power.

Relay

Relay	
Settable parameters as per	as per table 2
Trip Point setting as pe	as per table 2
Hysteresis $\quad 10 \%$ to	10\% to 50% of trip point, settable
Relay energizing delay 1 to 10	1 to 10sec, settable
Relay de-energizing delay 1 to 1	1 to 10sec, settable
Contact type single	single pole $\mathrm{NO}+\mathrm{NC}$, volt free contacts
Contact rating 250V,	250V, 5 A
Influence of variations	
Temperature Coefficient	$0.05 \%{ }^{\circ} \mathrm{C}$ for Current (10.120% of Rated Value)
(For Rated value range of use 0... $50^{\circ} \mathrm{C}$)	use $0.025 \% \%^{\circ} \mathrm{C}$ for Voltage ($10.12 \mathrm{t20}$ of Rated Value)
Error change due to variation of an influence quantity	n of an $\quad 2$ Error allowed for the reference condition applied in the test.
Display	
Led	3 line 4 digits, Display height: 14 mm
Annunciation of units	Bright LED s from Back side of screen
Update rate	Approx. 1 seconds
Controls	
User interface	4 Keys
Standards	
EMC Immunity	IEC 61326-1: 2005
EmC Emmision	IEC 61326-1: 2005
Safety	IEC 61010-1-2001, permanenty connected use
IP for water \& dust	IEC 60529
Safety	
Pollution degree	2
Instalalaion categoty	III
Isolation	
Dielectric voltage withstands test between circuits and	3.3 kV RMS 50 Hz for 1 minute Between all electrical circuits
Environmental conditions	
Operating temperature	0 to $50^{\circ} \mathrm{C}$
Storage temperature	-25 to $+70^{\circ} \mathrm{C}$
Relative humidity	$0.90 \% \mathrm{RH}$ (Non condensing)
Warm up time	3 minute (minimum)
Shock	15 g in 3 planes
Vibration	$10 . .55 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ amplitude
Enclosure	
Enclosure front	IP 50
Enclosure front with seal (optional	(totional) IP 65
Enclosure back	1 P 20
Dimensions	
Bezel Size	$96 m m \times 96 m m$ DIN 43718
Panel cut out	$92^{108} \mathrm{~mm} \times 92^{108} \mathrm{~mm}$
Overall Depth	55 mm
Panel thickness	1-3mm for self clicking $1-6 \mathrm{~mm}$ for swivel screws
	320 grams Approx.

14. Connection for Optional Relay Output / RS 485 (rear view of Delta Power) :
15. Relay Output
\square
16. Programming

The following sections comprise step by step procedures for configuring the
Deita Power for individual user requirements.
To access the set-up screens press and hold the "vV" and "A" Keys Simultaneously
This will take the User into the Password Entry Screen (Section 3.1)
.1. Password Protection
Password protection can be enabled to prevent unauth
Screens, y deféaut password protection is not enabled.
horized access to set-u

Password protection is enabaled by selecting a four digit number other than 0000 ,
seting a password of oooo disabies the password protection.

Password confirmation
Pressing "V" key will advance to the "New
thange Password" entry stage.
ressing the "A" key will advance to the men

Rarameter No: 4 (Current 1)
Trip Point $=50 \%$
Aysteresis $=50 \%$ of trip point
Anergising Delay: 2s
Ae-energising Delay: 2 s

Auxiliary Supply Auxiliary Supply
DC Auxiliary Supply
Seff Powered
3 Phas 3 , 4 .
Inputs
Nominal Input Votrage
System PT Primary Values
System PT Secondary Values
Max continuous input voltage
al input voltage burden

Nominal Input Current

Max continuous input current
Nominal input current burden
System CT primary values
System Secondary Values
Overload withstand
Voltage input
ent input

Frequency Range

VA Burden
DC Burden
Operating Measuring Ranges
Voltage with external Aux.
Voltage with Seff Aux.
Curent
Frequency
Reference conditions for Accuracy
Reference temperature
Input frequency
Input waveform
Auxiliary supply voltage
Auxiliary supply frequency
Power factor
Accurac
Votage
Voltage
Current
Current
Frequency
Frequency
Active power
Reactive power
Apparent Power
Power factor
Phase angle
$500 \mathrm{~V}_{\mathrm{ut}}\left(290 \mathrm{~V} \mathrm{~V}_{\mathrm{ut}}\right)$ AC RMS $10 V_{\text {L. . to }} 692 \mathrm{~K}$ K.L., programmable at site 120% of Rated Value
.3VA approx. per Phase (for ext. Aux. Meter)
5A AC rms
20\% of Rated Value
<0.2VA approx. per phase
Std. Values 1 to 9999A (1 or 5 Amp secondary)

$2 \times$ Rated Value

(1s appiciation repeated 10 times
at 10 in intenals)
$20 \times$ Rated Value (1s application repeated 5 times at 5 min. intervals)

40V to 300V ACIDC (+1- 5%)

$12 V-48 V$ DC
Input Voltage Range from 80% to 100% of rated value (Self Powered meter is avaialale only in 3 Phase 4 W and
1 phase network. Aux input is derived from L1 phase) 45 to 65 Hz
VVA Approx.
3W Approx.
.
10.120 \% of Rated Value

80 ... 120% of Rated Value
$10 . . .120 \%$ of Rated Value
$45 . .65 \mathrm{~Hz}$

$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$

50 or $60 \mathrm{~Hz} \pm 2 \%$
Sinusoidal (distortion factor 0.005)
Rated Value $\pm 1 \%$
Rated Value $\pm 1 \%$
coso=1 for active power $/$
sing=1 for reactive power
$\pm 1.0 \%$ of range ($20 . . .100 \%$ of Nominal Value)
$\pm 1.0 \%$ of range ($10 \ldots 100 \%$ of Nominal
$\pm \pm 1.0 \%$ of range (10 ...
$\pm \begin{aligned} & \pm 0.5 \% \text { of mid frequency } \\ & \pm 1.0 \% \text { of range (} 10 . .100 \% \text { of Nominal Value) }\end{aligned}$
$\pm 1.0 \%$ of range ($10 . . .100 \%$ of Nominal Value)
$\pm 1.0 \%$ of range ($10 \ldots 100 \%$ of Nominal Value)
$\pm 2.0 \%$ of uniti ($50 \ldots 1 . .100 \%$ of N Nominal Value)
$\pm 2.0 \%$ of range ($50 . .100 \%$ of Nominal Value)

Enter Password, prompt fof first digit:
(" Denotes that decimal point will be lashing)
Press the "V" key to scroll the value of the first digit from
0 through to 9 , the value will wrap trom 9 round to 0 .
Press the "A" key to advance to next digit.
In the special case where the Password is "Ooo" pressing the "A" key when prompted for the first digit will
advance to to the "Password Confirmed" screen.

Enter Password, first digit entered, prompt for second
 Use the "v" key to scroll the value of the second digit
from 0 throught to 9 , the value will wrap from 9 round

Press the "A" key to advance to next digit.

Enter Password, second digit entered, prompt for Third
digit.
($"$ Denotes that decimal point will be fashing). Use the "V" key to scroll the value of the third ligit
trom 0 throught to , the value will wrap from 9 round trom
to 0.

Press the "A" key to advance to next digit.

Enter Password, third digit entered, prompt tor Fourth
${ }^{\text {c/Pb}}$ (Denotes that decimal point will be fashing) Use the "V" key to scolil the value of the fourth digit
from 0 through too, the value will wap foom 9 round
to

Press the "A" key to advance to next digi

Enter Password, fourth digit entered, awaiting
verifcation of the password Pressing " A " key acceptst the value of fourth digit and
enters

v A P *ง

$\operatorname{cod} E$
 0.0.0.0.
 567.
 v ©

ew / Change Password, first digit entered
New Change Password,
prompting for second digtit
in
Pressing the "V" key will scroll the value of second Pressing the "Vey wils scriol the value of second
digit from Othrough to 9 , the vave will wrap from
9 round to 0 .

Pressing the " A " key to advance the operation to the
Next digit and sets the second digit, in this case 6 "
 Pressing the "v" key will scrall the value of the thid digit
from t trough toy, the value will wrap foom 9 round to 0 .

Pressing the "A" Aey to advance the operation to
the next digit and sests the third digitit int thi case 77 ".

Password incorrect.

The unit has not accepted the
Password entered.
Pressing the $v=$ key will return to
the Enter Password stage.
Pressing the "A" key exits the
Password menu and returns operation
aassword menu and returns operation
othe measurement reading mode.

New $/$ Change Password
(indicates that this decima Pressing the "V" key will scroll the value of the first
Digit from 0 through to o, the value will wrap fiom 9 Digit from 0 through to to, the value will wrap from
round to 0 .

Pressing the " A " key to advance the operation to the
Next digit and sets the first digit, in this case "5"

New / Change Password, third digit entered, prompting
for fourth digit. ${ }^{4}$ indicates that docimal point will be flasting).
Pressing the "v" key will scroll the value of the fourth
digit from 0 throught to, the value will wrap foom

ew Password confirmed
Pressing the "V" Key will return back to the
NewiChange Password" screen.
Pressing "A" key will avvance to the Set up
Screen. (See section 3 .2).

v A P 포 System Type Confirmation
 v A P ©

.2.2. Potential Transformer Primary Value

The nomina tull scale voltage which will be set \& displayed as the Line to Line voltage for al s system

 advances to the "Current Transtormer Primary value Edir menu. (see Section 3.2.3) Pressing the "V" key will enter the "Potential transformer
Primary Value edit mode. Witily the muliner must Key will move the decimal point position to the right side

Net : PT Values must be set as Line to Line Voitage for Primary as Well as Secondary for all system types (3P3W/3P4W/1P2W).

Potential Transformer Primary Digit Edit
Pressing the "v" key will scroll the value of the most
significant digit from 0 through to 9 unless the presentiy displayed Potential Transformer Primary value together with the Current Transformer Primary value previously
Set would result in Set, would result in a maximum power of greater than
1000 MVA per phase in that case the digit range will be
 Restricled. "A" key accepts the present value at the
Prissor position and advances the cursor to the next cursor position and adv

When the eleast significant tigitit has been set, pressing the " A " key will avvance to the
Pootential transormer Primary value Confimation"
 decimal point and cursor flasting at the "hundreds of volts" position as shown below.

Ptpr
11.00

5Et
v A P
his screen will only appear following an edit of the
.
If the set value is to be corrected, pressing the "V" key
will return back to "Potential Transtormer Primary value Edit" stage
Pressing the " A " key sets the displayed value and will
advance to the Current Transormer Primary Value Selection. (See section 3 3.2.3.)
3.2.3. Current Transformer Primary Value

The nominal Full Scale Curent that will be displayed as the Line currents. This screen enabobes the iser to display the nominal Line curents inclusive of any transformer ratios, the values displayed

ressing the "V" key will enter the "Curren Transformer Primary Value Edit" "ode.
Pressing the " A " key will accept the present value And Advances to the "Potential Transformer Secondary
Value edil screen (See section 3.24)

Current Transformer Ratio Edit Pressing "V" key will advance the Most Significant
 Transformer Primary Value together with the Potential
Transformer Primary Value results in a maximum transtormer Primary Value results in a maximum
power of freater than 1000 MUA in which case the
digit ange will be resticted digit range will be restricted.
Example: $I f$ p primary value of PT is set as 692.8 kVL L L
 estricted to 1736 A .
Pressing the " "A" key will advance to the next least
sigificicant digit. 0 " Denotes that decimal point will be gnnticant dig
Hashing).
The "Maximum Power" restriction of 1000 MVA refers to 120% of n no
120% of nominal voltage, i.e, 694.4 NVA nominal power per phase.
When the least significant digitis set, pressing the "A" key will advance to the "Current alue Confirmation" stage.
The minimum value allowed is 1 , the value will be forced to 1 if the display contains
zero when " A ' key is pressed.

This creen will This screen will only appear following an edit of the Current
Transformer Primary Value, when "A ${ }^{\text {A key }}$ is pressed after Transtormer Primary Value, when "A" key is
Seting the value of least significant Digit. ressing the "v" key will return back to CT primary edit Pressing the "A" "Rey sets the displayed value and then
adavance ot the "Poential Transior
Edit" menu. (See section 3.2 .4 .
8.4 Auxiliary Supply

Delta Power should ideally be powered from a dedicated suply, however powered
rom the signal source, provided the source remains within it may be the limits of the Chosen auxiliary voltage range.
8.5 Fusing

86 Earth/Ground Connections
For safety reasons, CT secondary connections should be grounded in accordance with
For saiely reasons
local regulations.

9 Connection Diagram

10. Optional Pluggable Modul

11. Phaser Diagram for sign convention of power

v A ©

Hy5t
 5Et

v © P •

8. Installation

 sides of meter
If required Aditional support is provided with swive screws (optional) as shown in figure.

The Delta Power should be mounted in a reasonably stable ambient
temperature and where the operating temperature is within the range lemperature and where the operating temperature is within the range
0 to $50^{\circ} \mathrm{C}$. Vibration should be kept to a minimum and the product should not be mounted where it will be subjectected to excessive direct sunlight.

.1 EMC Installation Requirements

This product has been designed to meet the certification of the EU irectives
when installed to a good code of practice for EMC in industrial environments, e.g.
Scened output and low signal input teads or have provision for fiting
RF suppression components, such as feritite absorbers, , ine filters etc., in
, RF suppression components, such has fern
 critical functions, in EMC enclosures that protect against
interference which could cause
a disturbance in function.
Avoid routing leads alongside cables and products that are, or could be, a source
of interference.
To protect the product against permanent damage surge transients must be limited

The Current inputs of these products are designed for connection in to systems via Current Transformers only, where one side is srounded.
ESD precautions must be taken at all times when handing this product.
8.2 Case Dimension and Panel Cut Out

With optional Limit switch.

3.2.4. Potential Transformer Secondary Value

Potential Transtormer. Secondary value is see form Potential Transtiorne
100 L L-L to 500 V -L
Pressing $\mathrm{A}^{" \text { " key accepts the present value and then }}$
advances to Current Transformer Secondary value
advances to Current T T.
edit menu (section 3.2 .5 .
Pressing the "V" Key will enter the PT secondary
value edit mode.
Denotes that Decimal Point will be flashing.

"A" " " avanances the screen to "PT secondary value
Confirmation" Screen.

Set the secondary value as per following ranges for better
Accuracy Results :
Input Voltage Range $($ VL-L)
$\begin{array}{c}\text { PT Secondary } \\ \text { Range to be set (VL-L) }\end{array}$
$0-125 \mathrm{~V}$
$12 \mathrm{~V}-20 \mathrm{~V}$
$251 \mathrm{~V}-500 \mathrm{~V}$
$126 \mathrm{~V}-125 \mathrm{~V}$

PT Secondary value confirmation

This screen will only appears following an edit of PT
secondary value.
If secondary value shown is to be corrected, pressing
"V" key will return back to PT secondary edit stage.
.
Pressing "A" key sets th er secondary edir
will advance eto st sect seondary Value menu.
(See section 3.5)
will advance to CTS
(See section 3.2 .5)
3.2.5. Current Transformer Secondary Value

This scre
Value.
The
Value
The p
The possible Values for CT Secondary are 1A and 5 A.
RESET menu (section 3.2.6).
Pressing "V" key will enter the CT Secondary Edit menu.

Current Transformer Secondary Value Edit
Pressing "V" will Scroll Value between 1 and 5 .
Pressing "A" will enter the CT Secondary Value
Confirmation menu.

Secondary Value Confirmation
Pressing
Menu.
ressing " " " will Accept present Value and
dvances to RESET menu (section 3.2.6)
3.2.6. Resets

The following screens allow user to reset the run hrs, ON hrs, No. of interruptions

Confirmation of parameter for RESET Pressing "V" will enter reset edit menu back and
scroll between parameters as above. Pressing "A" key will Reset the Selected Paramete In this sase hour parameters will get reset.
Then it will enter to auto scrolling or fixed s Then it will entert to a a
selection parameter.
3.2.7 Screen Auto scrolling / Fixed Screen selection

This menu allows user to select scrolling of parameters or fixed parameters Scree

Pressing of "V" enters to Edit menu.

Fixed Screen / Auto Scrolling Edit
Pressing of "v" Rolls between "Yes" and "No" Pressing "A" enters Auto scrolling / fixed screen
Select contimation
相
Select "Yes" tor auto scrolling and "No" for
fixed screen.
v A P * ง

Confirmation of Auto Scrolling /Fixed Screen Pressing "V" enters back to screen edit menu. Pressing "A" confirms the selection and enters
Number of poles selection menu.

Arip Point $=50 \%$

Aysteresis $=50 \%$ of trip poin
Energising Delay: 3 s
Ae-energising Delay: 25

3.2.12 Relay Tripping (Energizing) Delay

Energizing delay can be set from 1 to 10 seconds.

Energizing delay Edit
Pressing "V" key scrolls the display in increasing order upto 10 sec and back to 01 sec .
Pressing "A" key ente
confirmation screen

Energizing delay confirmation
Pressing "V" key re-enters into edit screen above, Pressing "A" key sets the displayed time in seconds As a delay for Relay Energize and enter into
De-Energizing delay setting menu (section 3.2.14).
3.2.14 Relay Resetting (De-Energizing) Delay
de-Energizing delay of relay can be set from 1 to 10 seconds.

$d E-t \quad$ De: Enegzing deayay Eait

 Pressinn "A" key enters into de:Energizing delay
contimaion screen

De-Energizing delay confirmation
Pressing "V" key re-enters into edit screen above. Pressing "A" key sets the displayed time in seconds As a delay for Relay de-Energize and exits set up
Menu, and then enters into measurement mode.
4. Run Hours

$r n-H$			
0008			
08.30			
v	A	P	5ง

This screen shows the total no. of hours the
Load is connected. Even if the Auxiiary supply
is interupted, count of Run hour will be maintain is interupted, count of Run hour will be maintained
In internal memory \& displayed in the format
".
 005678.56 ,
5 minutes.

Attier 999999.599 count of run hours, display will
Start
again from zero. Atier 99999.59 count
Star again riom zer.
To reset run hour count To reset run ho
Reset (3.2.6).
5. ON Hours

0000

v A P ง ง
This screen shows the total no. of hours the
Auxiliary supply is oN. Even if the Auxiliary Auxiliary supply is oN. Even if the Auxiliary
supply is interrupted, count of oN hour will be
maintained I ni iternal memory \& displayed in maintained In internal memory α displayed
the format "Hours.min". For example, if the format "Hours.min". For example, if
displayed count is 014678.23 , then it indicates
tisfor 14678 hours and 23 minutes. After 999999.59 count of ON hours, display will
Start again from zero. To reset ON hour count manually, see section
Reset (3.2 .6).
6. Number of interruptions

7. Negative sign indication

If the segment glows,	ates negative sign of displayed parameter.
55	
	indicate the operation of system in respective mode
4.769	For example in the screen shown, inpu
$v A^{\text {a }}$, จง	activ

