Single Phase Energy Meter

Installation \& Operating Instructions

```
Section Contents
2. Measurement Reading Screen
3. Phase Indications
    4.1 Password Protection
    4.1 Password Protectio
        4.2.1 System Parameter selection screen
            4.2.1.1. Potential tranformer Primary value
            4.2.13 Current transtormer Primary value
            4.2.1.4 Energy Display on moobus
            Communication Parameter selection screen
            C.2.2.1 Address Setting
            .2.2.3 RS 485 Party selection
            4.2.3 Reset Parameter selection screen
            4.2.3.1 Reseting Parameter
            4.4.4.4 Pulse Duration (width) selection
            4.2.4.2 Pulse rate divisor
            4.2.5 Quit screen
    Relay Output (Optiona)
    RS 485 (Modbus)
    6.1 sser assignable Modbus Registe
    8. Installation
    8.1 EMC Instalataion Requirements
    lol
    8.4 Wuxinglary Supply
    8.6 Earth/Ground Connection
9. Network Wiring
0. Specification
11. Connection for Optional Pulse output/ RS 485
```


1. Introduction

15000251_Rev.D -05/13
The instrument is a panel mourted $96 \times 96 \mathrm{~mm}$ DIN Quadratic energy
neter. It accumultes Active energy. in single phase network e nergy, in single phase network.

Ultra high brightness LED display.
Meter can be configured \& Programmed at site for the follow PT Primary, PT Secondary, CT Primary, Moobu

zumbenm
$9 \prod_{\text {Upkey }}^{9}$
The front panel has two push buttons through Which the user can reset the energy \& configure
the proudut.
The tront panel has Impulse red led. flashing at The product. panel has Impulse red led, flashi,
The eroporional to measured power. It impulse rate is 3 3000impulseskkWh.
3. Phase Indications

2. Measurement Reading Scree

n normal operation the user is presented with active energy measurement screen. Screen 1 : Active Energy (kWh)

Active energy is displayed in 8 digit counter with auto ranging feature. Below given table
describes auto ranging with minimum resolution of energy measured in perticular range When x1000 LED glows the energy is displayed in mega watt.

4. Programming

The following sections comprise step by step procedures for configuring the
meter for individual user requirements.

1. Password Protectio

Passevord protection can be eenabled toprevent unauthorised access to set-up
screens, by defuut paswword protection is not enabuled. Password protection is enabled by selecting a four digit number other than 0000
setting a password of oooo disables the password protection.

${ }^{\text {som manmm }}$
0 -

san
0 0

$$
{ }_{\text {seownmann }}
$$

$\square \square$

$0 \square$

$\square \square$

$0 \square$

Press the "II Down" key to scoill the value of the fist digit
fom 0 through to 0 , the value wil wrap foom 9 round to 0 .
Press the "TUp" key to a dvance to next digt.

Enter Password, fist digite entered, prompt for second

Press the " \uparrow Up" key to a avance to next digit.

Enter Password, second digite entered, prompt for third
digit Denotes haar decimal point will be flasting),

Presss the " "U UP" key to a drance to next digit

Enier Password, third digit entered, prompt tor fourth
(Denotes that decimal point will be flashing).

Press the - - u " k key to advance to verificition of the
password.

Enter Password, foutht digite entered, awaiting
veification of the password.
verifcation of the password.

Password confirmed.

Pressing "IB Down" key will advance to the "New
change Password enty stage.
Pressing the "Tup" key will advance to the Menu selection
screen. See section 4.2).

s.anamm
$\square \square$
Password Incorrect.
The unit has not accepted the
Password entered.
Pressing the "』 Down" key will return to
the Enter Password stage.
Pressing the "T Up" key exits the
Password menu and returs heration Prassword menu and returns operation
to the measurement reading mode.

New / Change Password
('Decimal point ndiciates sthat this will be fashing).

$\square \square$

sex mamm
$\square \square$

 Pressing the "Ru" k ey to advance the operation to
the next digitand sests the third dititit in tis case to 5 "

$\square \square$

	New Password confirmed.
swommm	Pressing the "ヤ Up" key will advances to the
$\square \square$	Menu selection screen.(see section 4.2).

4.2.5 Quit screen.

	This screen allows user to Quit from Menu. Pressing the " $\boldsymbol{\top} U p$ " key will allow the user to Quit from menu \& return to measurement screen
quit	
${ }^{\text {rom }}$, kV	
	Pressing the "®down key will avance to system
sevoment	Parameier Selection screen (see section 4.2.)
$\square \square$	

4.2.1 System parameters Selection
4.2.1.1 Potential Transformer Primary Value

 postion. At this stage the decimal point will flash.

When the least significant digit has been set pressing the
PPotential Trans
Screen showing display of 0.23 g VV ie. 2339 volts indicating steady decimal point and cursor

4.2.1.2 Potential Transformer secondary Value

The value must be esto the nominal full scale secondary voltage which will be obtained from the
 motential tanssomerer p pin
 Pressing the "תd down key will avarance to Quit scree (ses section 4.2 .5
ential Transformer sece

 From avaiable range of PT secondary value
Pressing the "Tup" key accents the
 anex cuso
nextess
rangificantid digit
ranges for various Input Voltages $\frac{70 V-139 V L-N}{140 V-27 T V L-N}$
 postion．At this stage the decimal point will flash
When the least significant digit has been set pressing the＂Qup＂key will advance to the

U5． 239.5 5t	This screen will only appear following an edit of the Potential Transformer Secondary Value
	If the scaling is not correct，pressing the＂Down＂ key will return to the＂Potential Transformer Secondary Value Edit＂
$\square \square$	and will advance to the current Transformer Primary

4．2．3 Current Transformer Primary Value

The＂Maximum Power＂resticicion of 1000 MVA refers to 120% of nominal current and 120% of oomina volage，ie， 694,4 MVA nominal power per phase．
When the least significant digit had been set，pressing the＂Tup＂key will avvance to the
Current Transtomer Primay Vaue Confmiman＂stage．
The minimum value allowe is 1 ，the value will be forced to 11 fithe display contanins zero when the ＂Tup＂key is resesed

${ }_{3 \text { mamman }}$
$0 \square$ Curent Transfomer Pimana Value Confirmatio This screen will only appea following a a edito of the Curent ，
 stage witht he most significant digit thighighted assocociated Tressing the＂TUP＂Kely sest the eisplayed value and wiil adrance tothte＂Energy Display on Mooduss＇menu
（See section 4.2 .14 ）

4．2．1．4．Energy Display on modbus
This screen enable user to sete neregy in terms of Wh／KWh／MWh on RS 485 Output depending as per the
requirenent．

sex monn

0 日

$\square \square$
Note ：Default value is set to＇ 1 ＇i．e．Energy on Modbus will be in
 Pressing the «d Down＂key will enter the＂Energy Display
On Modusus Edit mode and scoll the value throught the values 1,282 wapping back to
$1:=$ Energy
In Wh
2：Energy in KWh
3：
Energy
in MWh
．
Pressing the＂Tup＂Key advances to the＂Energy Display Energy Display On Moobus Conimmalon． This screen will only appear folowing a e edit of the
Energy D Display On Moodus． Pressing the＂』 Down＂＂ey will enter the＂Energy Display
On Nodusus Edit ． Pressing＂＂Up＂key sets the displayed value and wil a avance to the＂Energy digit tesest counte＂menu．
（See secion 4.21 .5$)$

terms of Wh resp．

4．2．1．5 Energy Digit Rollover（reset）count

B 0

sumpmenm
$\square \square$

4．2．2 Communication Parameter Selection
4．2．2．1 Address Seting ：This screen applies to the RS 485 output only．
This screen allows the user to set RS4855 parameter for instruments

The range of allowable address is 1 to 247 ．
Enere Address，prompt for fistst igit．
＂Denotes that decimal point will be fasshing）．
Press the＂B Down＂key to scroll the value of the first digit
Press the＂\uparrow U＂key to avvance to next digit．
Enter Address，first digit entered，prompt for second digit （＊Denotes that decimal point will be fashing）．

Use the＂\S Down＂key to scroll the value of the second digit

Press the＂TUp＂key to a avance to nexx digit．

${ }^{\text {som }}$ 品manm
$\square \square$

Rdd $10, E_{0}$

som ${ }^{(n x m m}$
$\square \square$

${ }_{\text {sucumpum }}$
00
Enere Address for third digit．
ress the＂TUp＂key to advance to Address confimation Screen．

Adrress confirmation Screen．
This Screen confirms the Address set by yser． Press the＂Tu＂Kevy to advance to next Screen
＂Rs885 Baud Rate＂（See Section 4.2 .2 ．

Pressing the＂$₫$ Dom＂＂key will reenter the＂Address
Edit＂mode．
Enter Address，second digit entered，prompt for third digit
Use the＂ß Down＂key to scroll the value of the third digit

4．2．2．2 RS 485 Baud Rate ：

$0 \square$

swommenm
$\square \square$
4．2．2．3 RS 485 Parity Selection：

0 0

swo mankm
$\square \square$

Pressing＂Ω Down＂Key will be re－enter into Parity Edit mod

 Pressing the＂TUp＂key will set he valuePressing the＂Tup＂key again will jump back to the
menu selection screen（see secion 4.2 ）．

3．2．3 Reset Parameter Selection
3．2．3．1 Resetting Parameter

swomman
－

Reset opion select

This screen allows the usert to set Baud Rate of $\mathrm{F} S$
The values 85 port． Pressing＂Tup＂key acceptst he present valu and
advance to the Parity Selection（See Section 4.2 .23 ）
 RS 485 Baud Rate confirmaion ： Presing＂IN Down＂key will bere－enter into the
Baud Rate Pressing the＂Tup＂key will select he value and adrances
to the Parity Selection（See section 4.2 .2 .3 ）．

	Pressing＂ $\boldsymbol{\sim} U p$＂key accepts the present value and advance to Menu selection（see section 4．2）．
Pr. no e em kwh	Pressing the＂Down＂key will enter the＂Parity \＆stop bit Edit＂mode and scroll the value through
	odd ：odd parity with one stop bit no 1 ：no parity with one stop bit no 2 ：no parity with two stop bit E ：even parity with one stop

 advance to the＂Res
\＆resels energy． Integraed Energy at the moment of reseting energy will
become zero．

Reset Energy Confimation． Pressing the＂＂Down＂key will re－enter the＂Reset
option＂mode． smpmon

Pressing＂rup＂key will iump back to the
menu selection screan（se section 4.2 ．

4．2．4．Relay output menu

2．4．1 Pulse Duration Selection

This screen applies ony to the Pulsed ouput mode of the relay This screen alows the userto set Relay energisation time in milisconds

	Pusse Duration Edit．
dur． 100	Pressing＂ $\boldsymbol{\uparrow} U p$＂key accepts the present value and advance to pulse rate selection menu（see section 4．2．4．2）
Wrex	Pressing the＂$\sqrt{ }$ Down＂key will enter the＂Pulse Duration Edit＂mode and scroll the value through 60，100， 200 and wrapping back to 60
$\square \square$	Pressing the＂TVP＂Key will select the value and avvances to＂Puse Duration Conirimaion：
	Puse Duraion Confimation．
dur． 100 5t	This screen will only appear following an edit of the Pulse duration．
	pressing the＂Ω Down＂key will re－enter the＂Pulse
［	Pressing＂个Up＂key set displayed value and Will advance to pulse rate selection menu See section 4.2 .4 ）
$\square \square$	

4．2．4．2 Pulse Rate

This screen applies so the Relay Output option ony．The scren alloww usert set the energy
pulse raie divisor Divisorvalues can be selected through $1,10,10,1000$ ．

	Pressing＂个Up＂key accepts the presents value and advances to the＂Menu Selection Screen＂ （See section 4．2．4．）．
rAt	
Ton way	Pressing the＂』Down＂key will enter the＂Pulse rate divisor Edit＂mode and scroll the value through the values $1,10,100$ ， 1000 wrapping back to 1 ．
mbommm	Pressing the＂ $\mathbf{r} U p$＂key advances to the＂Pulse rate Divisor Confirmation＂menu．
$\square \square$	
	Rate Divisor Confi
	This screen will only appear following an edit of the Pulse rate divisor
	If the Pulse rate shown is not correct，pressing the ＂$\sqrt{ }$ Down＂key will return to the＂Pulse rate divisor Edit＂stage by blanking the bottom line of the display．
口	
$\square \square$	Pressing＂Up＂key sets the displayed value and will advance to the＂Relay output Option Menu＂． （See section 4．2．4）

5．Relay output（Optional）

5．1 Pulse Output ：

 mish MM 3400 SS Shas one pulse ultut．
Relay Contact One normally pen \＆one normally closed
Pulse Duration
Pulse Duration $60 \mathrm{~ms}, 100 \mathrm{~ms}$ or 200 ms

6. RS 485 (ModBus) Output

Meter supports MODBUS (RSS85) RTU protocool (2-wire)).
Connecion should be made using wisted pair shielded cable. All Al A and " B " connecions are daisy chined

S 485 nework supports maximum length of 1.2 km . Inculuding the meter, a maximum of 32

The maximum latency time of an meteiris 200 sms ie.. this is the amount of time that can pass
Ater sesding any wuery through soltware (of the Master), it tustatlow 200ms of time to elapse before Master can ignore the perevious uuery and can issuef fessh quever to to the slave.

The each byte in RTU mode has tolowing forma

	8-bit binary, hexadecimal 0-9, A-F 2 hexadecimal characters contained in each 8 -bit field of the message
Format of Data Bytes	4 bytes (32 bits) per parameter. Floating point format (to IEEE 754) Most significant byte first (Alternative least significant byte first)
Error Checking Bytes	2 byte Cycical Redundancy Check (CRC)
Byte format	1 start bit, 8 data bits, least significant bit sent first 1 bit for even/odd parity 1 stop bit if parity is used; 1 or 2 bits if no parity

Communcation Baud Rate is user selecatale fom the front panel between $2400,4800,9600,19200$ bps.

03	Read Holding Registers	Read ontent of read witit lecaion (4X)
04	Read input Registers	Read content of read only I Coction (3 X)
16	Pres	Set the content of read/ witie locations (4x)

01	Ilegal function	The function code is not supported by meter.
02	$\begin{aligned} & \text { Illegal Data } \\ & \text { Address } \end{aligned}$	Attempt to access an invalid address or an attempt to read or write part of a floating point value
${ }^{03}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Illegal Data } \\ \text { Value } \end{array} \\ \hline \end{array}$	Ate

Accessing 3 X register for reading measured values

Two conseculive 16 bitregisters represent one parameter: Refer table 4 for the addresses

Example:
Toleded parate
Volts :
Satatad

Query:

01 (Hex)	04 (Hex)	Hex	00(Hex)	00 (Hex)	02(Hex)	71 (Hex)	CB (Hex)
$\begin{array}{\|l\|l\|} \hline \text { Dev } \\ \text { Add } \end{array}$	$\begin{aligned} & \text { Fundicie } \\ & \text { cond } \end{aligned}$	$\begin{aligned} & \text { Starat } \\ & \text { Sigig } \end{aligned}$	Start Acd	Number of Registers Hi	Number of Registers L	$\begin{aligned} & \begin{array}{l} \text { CRC } \\ \text { Low } \end{array} \end{aligned}$	$\underset{\text { crigh }}{\text { CRC }}$

$12 \cdot$

(Hex)	04 (Hex)	(Hex)	43 (Hex)	6E (Hex)	E9 (Hex)	78 (Hex)	$88($ Hex)	AE (Hex)
	$\begin{aligned} & \text { Function } \\ & \text { Code } \end{aligned}$	$\begin{aligned} & \text { Byer } \\ & \text { Coount } \end{aligned}$		$\begin{aligned} & \text { Oata Regisiser } \\ & \text { Low Byye } \end{aligned}$		$\begin{aligned} & \text { Data Register2 } \\ & \text { Low Byte } \end{aligned}$	$\begin{aligned} & \text { CRC } \\ & \text { Low } \end{aligned}$	High

vte Count: Total number of data bytes received.

 Latar register 2 High B yve : Most significant 8 bis of ofata regisiser 2 of the pearamemeter requevested
Note: :Two consecutive 16 bit register represent one parameter.)

Table $4: 3 \mathrm{X}$ register addresses (measured parameters)

Note : Active Energy reading received will be in Watt Hours.
Note : Apparent Energy reading received will be in VA Hours.

Accessing 4 X register for Reading \& Writing :

Query:

Device Address	$01($ Hex)
Function Code	${ }^{03}$ (Hex)
StartAddress High	$00($ Hex)
Start Address Low	${ }^{20}$ (Hex)
Number of Registers Hi	00 (Hex)
Number of Registers Lo	${ }^{02}$ (Hex)
CRC Low	$05($ Hex)
CRC High	$\mathrm{C2}$ (Hex)

Starat Adriess High: Most significant8 bits of stating address of the parameler requested.
Stat Address low LLeast siginitiant8 8 bits ofstating address of the parameter requested. Umber of regisiter Hi: Most s iginficant8 8 bits of Number of regisisers requested Note : Two consecutive 16 bit register represent one parameter.)
sponse: PT Secondary 239.6V

Device Adress	01 (Hex)
Function Code	${ }^{3}$ (Hex)
Byte Count	04 (Hex)
Data Registerl High Byte	${ }_{3}^{43}$ (Hex)
Data Registertow Bre	$6 \mathrm{6F}$ (Hex)
Data Register High Byte	99 (Hex)
Data Register Low Byte	
CRC Low	35 (Hex)
CRC High	$91($ Hex)

Bye Count: Total Inumber of data bytes received
 Data register 2 High Byte : Most significant 8 bits of Data register 2 of the parameter reauested Datar egisiser 2 lit 0 (Note : Two consecutive 16 b it register represent one parameter)

Example : Writing PT Secondary

 Query: Set PT Secondary $=239.6 \mathrm{~V}$.

Device Address	01 (Hex)
Function Code	10 (Hex)
Starting Address Hi	00 (Hex)
Stating Address Lo	2C (Hex)
Numberof Registers Hi	00 (Hex)
Number of Registers Lo	02(Hex)
Byte count	04 (Hex)
Data Register-High Bye	43 (Hex)
Data Regiser-1 Low Bye	6 F (Hex)
Data Regiser-2 High Byte	99 (Hex)
Data Regiser-2 Low Byte	9A (Hex)
crclow	3E (Hex)
CrC High	40 (Hex)

Byte Count: Total number of data bytes to be transmited

 (Note : Two consecutive 16 bit register represent one parameter.)

Response.

Device Address	$01(\mathrm{Hex})$
Function Code	$10(\mathrm{Hex})$
StartAdress High	$00(\mathrm{Hex})$
Start Address Low	$20(\mathrm{Hex})$
Number of Registers Hi	$00(\mathrm{Hex})$
Number of Registers Lo	$02(\mathrm{Hex})$
CRC Low	$80(\mathrm{Hex})$
CRC High	$01(\mathrm{Hex})$

Start Address ligh: Most significant 8 bits of stating adress of the parameter requested. Start Address low: Least significant 8 bits o s statining address of the parameter requesested.
 umber of regisier LO: Leasis significant8 b bis of Number of fegisisers requested

$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \text { Requiser) } \end{array}$	$\begin{aligned} & \text { Parameter } \\ & \text { No } \end{aligned}$	Parameter	Read/Wite	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l} \hline \text { High Sytar } \\ \hline \end{array}$	$\begin{gathered} \text { t Address Hex } \\ \hline \text { Low Byte } \end{gathered}$
40005	1	Energy Display on Modus	RN^{p}	${ }^{00}$	04
40007	2	Sys Vollage	R	00	06
40009	3	Sys Curent	R	00	08
40013	5	Puse Widh	RN/	0	0
40015	6	Energy Reset	W_{p}	00	0 E
40017	7			00	10
40019	8	RS 485 Set-up Code	R N_{p}	00	12
40021	9	Node Address.	RWp	00	14
40023	10	Pulse Divisor	RWp	00	16
${ }_{40033}$	11	PT Pinimay	RWp	00	20
40035	12	CTPimay	R N_{p}	00	22
${ }_{40037}^{40039}$	1	System Power	${ }_{\text {R }}^{\text {R }}$	00	$\stackrel{24}{26}$
40039	14	Eneray Digit Roloveresesel) count	${ }_{\text {R }}$	00	26
40041	15	Regisier Ordermord order	RWp	00	${ }^{28}$
4	${ }_{17}^{16}$	${ }_{\text {PT Secondar }}$		$\stackrel{00}{00}$	20

```
StarA Address High: Most sigificant8 bits ofstating address of te parameter requested.
SarAddresss ow: Least significant8 bistoof stating address of the parmeter requested.
Number of register Hi: Most significant b bits of Numberof fegisters requested
Note : Two consecutive 16 bit register represent one parameter)
```


Explanation for 4 X register :

Address	Parameter	Descripition
40005	Energy display on Modbus	This address is used to set energy display on modbus in Wh,KWh \& MWh.Write one of the following value to this address. $1=$ Energy in $W h$. $3=$ Energy in MWh. 2 = Energy in KWh.
40007	$\begin{aligned} & \text { Systitem } \\ & \text { Votlage } \end{aligned}$	This address is read only and display System Voltage
40009	$\begin{aligned} & \text { Systitem } \\ & \text { Current } \end{aligned}$	This adresss is read only and displays System Current
40011		
40013	Pulse Width of Relay of Relay	This address is used to set pulse width of the Pulse output. Write one of the following values to this address: 60: 60 ms 100: 100 ms Writing any other value will return error
40015	Reset Energy Counter	This address is used to reset the Energy Counter. Write zero value to this register to reset the energy counter. Writing any other value will return an error.
40017		
40019	$\begin{aligned} & \text { Rs485 Set-up } \\ & \text { Code } \end{aligned}$	This address is used to set the baud rate, Parity, Number of stop bits. Refer to Table 6 for details.
40021	Node Address	This register address is used to set Device address between 1 to 247
40023	Pusse Divisor	This address is used to set pulse divisor of the Pulse output. Write one of the following values to this address: $\begin{array}{ll}\text { 1: } & \text { Divisor } 1 \\ \text { 10: } & \text { Divisor } 10\end{array}$ 100. Divisor 100 1000 : Divisor 1000 \& in KWh and MWh divisor will be 1 by default. Writing any other value will return an error.
40033	PTPRimay	This addess allows the usert ose P P Pimany value. The maximum setable value is 400 KV \& also depends on the per phase t IOOOMA Restricicion of power combined with CT pimany. PT primany yalue should be in tems of voltage fore example to set 2kV send 2 2oov.
40035	CTPimary	This address allows the user to set CT Primary value. The maximum settable value is 9999 \& also depends on the per phase 1000MVA Restriction of power combined with PT primary
40037	Sys Power	System Power (Read Only) is the Nominal system power based on the values of Nominal system volts and Nominal system current.
40039	Energy digit Rollover(Count	This address is used to setting maximum energy count after which energy will rollback to zero depends upon setting of Wh,KWh, \& MWh.If Energy display on modbus in Wh count will be set in between 7 to 14 or In KWh set in between 7 to $12 \& \ln$ MWh set in
40041	Word Order	Word Order contros sthe order in which meter reaisise order. In nommal mode, the two regisiters that make up a floating point tumbers are sent most significant byetestist: In reversed regisiser mode, the wo rerisiterst that make up aftooting point tumbers are sent teast significant byeses fist. To set the mode, witie the value 2141.0 O int this regisiserthe instrument will detect the order used to send this value and set that order for all ModBus transaction involving floating point numbers.
40045	PT secondar	This address is used to read and write the PT secondary value Ref Table for the range of PT secondary settable values in Section 4.2.1.3
40071	Password	This address is used to set \& reset the password. Valid Range of Password can be set is location is read it will 1) If password lock is present \& if this loce return zero. 2) If Password lock is absent \& if this location is read it will return One. 3) If password lock is present \& to disable this lock first send valid password to this location then write " 0000 " to this location 4) If password lock is present \& to modify 4 X parameter first send valid password to this location so that 4X parameter will be accessible for modification. 5) If for in any of the above case invalid password is send then meter will return exceptional error 2

Table 6 : RS 485 Set-up Code

Baud Rate	Parity	Stop Bit	Decimav value
19200	NONE	01	12
19200	NONE	02	13
19200	Even	01	14
19200	ODD	01	15
9600	NONE	01	08
9600	NONE	02	09
9600	EVEN	01	10
9600	ODD	01	11
4880	NONE	01	04
4800	NONE	02	05
4880	EVEN	01	06
4800	ODD	01	07
2400	NONE	01	00
2400	NONE	02	01
2400	Even	01	02
2400	000	01	03

Note: Codes notitised in the table above may yive ise to nnperedicable results including loss of
communication. Excise caution when attending to c change mode via direct Modus w wites
6.1 User Assignable Modbus Registers:

| The meter contanins the 20 user assignable registers in the address range of 0×200 (30513) |
| :--- | Any ofthe parameier adresesses (3X regisise addresses Table 4)) accessible in the instumer

Table 9 : User Assignable 3X Data Registe

Example:
Assigning parameter to user assignable registers
 Assigning Query:

Device Address	01 (Hex)
Function Code	10 (Hex)
Starting Address Hi	02 (Hex)
Staring Address Lo	00 (Hex)
Number of Registers Hi	00 (Hex)**
Number of Registers Lo	02(Hex)*
Bue Count	04 (Hex)
Data Regiser-1High Byte	${ }^{00}(\mathrm{Hex})$
Data Register-1 Low Byte	${ }^{00}$ (Hex)
Data Register-2 High Byte	${ }^{00}(\mathrm{Hex})$
Data Register-2 Low Byte	${ }_{1 E}($ (Hex)
crctow	6 A (Hex)
CRCHHgh	$\mathrm{C7}$ (Hex)

Note : Parameters should be assigned in Mutiple of two i.e. 2,4,6,........20.
Response:

Device Address	01 (Hex)
Function Code	10 (Heex)
Star Address High	02 (Hex)
Start Address Low	00 (Hex)
Number f Registers Hi	00 (Hex)
Number of Registers Lo	02 (Hex)
CRC Low	40 (Hex)
CRC High	70 (Hex)

ing Parameter data through User Assinable Registes

 Quetage:

Device Address	00 (Hex)
Function Code	04 (Hex)
Start Address High	02 (Hex)
Start Address Low	00 (Hex)
Number of Regisers Hi	00 (Hex)
Number of Registers Lo	04 (Hex) ${ }^{*}$
CRC Low	F0 (Hex)
CRC High	71 (Hex)

StarAAdreses High: :Most significant8 bils of stating address of User assignabel register StarAAddress low Leasts iginifarat: 8 bits of statiting adress of USer assignable register. Uumber of regisiser Lo : Least significant 8 bits of of Number of of reisisters requequested

Response: : Volt2 = 219.30 / Power Factor' $=1.0$

Device Adress	01 (Hex)
Function Code	04 (Hex)
Byte count	08 (Hex)
Data Register-1/igh Bye	${ }^{43}$ (Hex)
Data Register1 Low Byte	58 (Hex)
Data Register-2 High Byte	4 E (Hex)
Data Register-2 Low Byte	04 (Hex)
Data Register3 High Byte	3 F (Hex)
Data Register-3 Low Byte	80 (Hex)
Data Register.4 High Byte	00 (Hex)
Data Register-4 Low Byte	00 (Hex)
CrCLow	79 (Hex)
CRCCHgh	3 F (Hex)

To get the data through User assignable Register use following steps. Assign stating addresses(Table33) of perameteres of interest to a

 "User assignable mapping regisiers" in a sesuence in whiction they are to be accessed(see section "Assigning parameter to user assignable eregisters")
) Once the parameters are mapped data can be accuired by usin "User assignable data register" Stating address .i.e to access data of Voltage wower factori, Wh import, Frequency send query with starting address 0x20 wit number of regisier 8 or indivicually parameters can be accessed
for example if current to be accessed use stating address 0×212.

7. Phaser Diagram :

Note : Though meter displays Active power (P) with " + " ((ositive sign) or " "-" (negative sign) depending on External CTC Connection,
Energy (kWh) integration will be in done same register irrespective

8.1 EMC Installation Requirement

This product has been designed to meet the certification of the EU directives
when installed to a good code of practic for EMC in industrial enviromments.

1. Screened output and low signal input leads or have provision for fiting the event that $R F$ fields cause problems.
Note: It is good practice to install sensitive electronic instruments that are
performing critical functions, in EMC enclosures that protect against electrica interference which could cause a disturranance in tunction
2. Avoid routing leads alongside cables and products that are, or could be, a
source of interference.
,
3. To protect the product against permanent damage, surge transients must surgeses to 2 KV a the source. The unit has been designed to automaticaly

The Current inpurs of these products are designed for comnection in to
systems via Current Transformers only, where one side is grounded.
4. ESD precautions must be taken at all times when handling this product.
8.2 Case Dimension and Panel Cut Out

8.3 Wiring

Note : It is recommended to use wire with lug fo connection with meter

8.4 Auxiliary Supply

ed from a dedicated supply, howeve it may be powered from the signal source, provided the source remains within
8.5 Fusing
It is recommen
.
8.6 Earth/Ground Connections

For saialy reasons, , CT secondary

9. Connection Diagram

9.1 Network Wiring

As the front of the enclosure conforms to 1 P54 itis protected from water spray
from ald directions, additional protection to the panel may be obtained by the

The meter should be mounted in a reasonably stable ambient
temperature and where the operating temperature is within the
-10 to $55^{\circ} \mathrm{C}$. Vibration should be kept to a minimum and the product sho

10. Specification :

1 Phase 2 Wire (Single Phase)

Inputs
Nominal input voltage
$57.7 \mathrm{~V}_{\mathrm{Lin}}$ to $277 \mathrm{~V}_{\mathrm{L}}$

Max continuous input
voltage
Max short duration input

Nominal input voltage burden
Nominal input current
Starting Current
Max continuous input current
Nominal input current burden
Max short duration current input
System CT primary values
120\% of Rated Value
$2 \times$ Rated Value
(1s application repeated 10 times
It 10 sintervals)
0.2VA approx. perphase

1A OR 5A AC rms
. 4% of Nominal Input Current
120\% of Rated Value
0.6 VA approx. per phase
$20 \times$ Rated Value (1s application repeated
$5 t$ imes at 5 min. Interals)

Auxiliary

-
a.c. supply voltage tolerance
a.c. supply frequency range
a.c. supply burden

100-250VAC-DC, $12-48 \mathrm{VDC}$
$+20 \% /-15 \%$ of Rated Value
5 to 66 Hz
4.5 VA
3 W

Operating Measuring Rang

Votage	$5 \ldots .120 \%$ of Rated Value
Curent	$5 . .120 \%$ of Rated Value
Frequency	$40 \ldots 70 \mathrm{~Hz}$
Power Factor	$0.5 \mathrm{Lag} \ldots 1 \ldots . . .8$ Lead

Nominal range of use of influence quantities for measurands

Voltage	50. . 120% of Rated Value
Current	10.. 120% of Rated Value
Input frequency	Rated Value $\pm 10 \%$
Temperature	0 to $50^{\circ} \mathrm{C}$
Auxiliary supply voltage	Rated Value $\pm 10 \%$
Auxiliary supply frequency	Rated Value $\pm 10 \%$
Temperature Coefficien (For Rated value range of use ... $50^{\circ} \mathrm{C}$)	$0.025 \% /{ }^{\circ} \mathrm{C}$ for Voltage (50..120\% of Rated Value) $0.05 \% /{ }^{\circ} \mathrm{C}$ for Current ($10 . .120 \%$ of Rated Value)
Error change due to variation of an influence quantity	2 * Error allowed for the reference condition applied in the test.

Display
Update
mpulse LED
Controls
Standards
EMC Immunity

Safety
IEC 61010-1, Year 2001

Isolation
$\begin{array}{ll}\text { Dielectric voltage withstand } & 2.2 \mathrm{kV} \text { RMS } 50 \mathrm{~Hz} \text { for } 1 \text { minute } \\ \text { beest between circuits and } & \text { between all electricical lircuits }\end{array}$
Environmental
Envionmental
Operating temperature
Storage temperature $\quad-20$ to $+65^{\circ} \mathrm{C}$
Relative humidity $\quad 0 . .90 \% \mathrm{RH}$

Warm up time
Shock
Enclosure (front only)

Enclosure
Style
Terminals
Depth

ModBus (RS 485) Option

Protocol	ModBus (RS 485)
Baud Rate	19200, 9600,4800 or 2400 (Programmable)
Parity	Odd or Even, with 1 stop bit Or None with 1 or 2 stop bits

11.1 One Pulse Output \& RS485

2 O

11.2. RS 485 Output

14.10]

11.3. One Pulse Output

相

