
10. Specification:

System
3 Phase

3 Phase 3 Wire / 4 Wire or Single Phase programmable at site
Inputs
Nominal Input Voltage
(Three wire and Four wire) System Primary Values System Secondary Values Max continuous input
voltage Voltage short duration input
Mat
voltage
Nominal input voltage burden

Nominal Input Current

Max continuous input current Nominal input current burden Max short duration current input
System CT primary values System Secondary Values
Operating Measuring Ranges Voltage with external Aux. Voltage with Self Aux.
Current
Frequency
Auxiliary
External Auxiliary Supply
Self Powered
Self Powered
Frequency Range
vA Burden
Accuracy
Voltage
Current
Frequency

Reference conditions for Accuracy	
Reference temperature	$23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Input frequency	50 or $60 \mathrm{~Hz} \pm$
Input waveform	Sinusidial (distorion factor 0.005)
Auxiliar supply voltage	Rated V
Auxiliary supply frequency	Rated Va
Relay	
Settable parameters	as per table 2
Trip Point setting	$10 \% \ldots 120 \%$ of set Range of parameter (except frequency which is $10 \% \ldots 100 \%$)
Hysteresis	5% of trip point
Contact type	single pole $\mathrm{NO}+\mathrm{NC}$, volt free contacts
Contact rating	250V, 5A
Nominal range of use of influence quantities for measurands	
Voltage	10.. 120 \% of Rated Value
Current	Rated Value ± 10 \%
Input frequency	$10 . .120 \%$ of Rated Value
Temperature	0 to $50^{\circ} \mathrm{C}$
Auxiliary supply voltage	Rated Value $\pm 5 \%$
Auxiliary supply frequency	Rated Value $\pm 10 \%$
Temperature Coefficient (For Rated value range of use $0 \ldots 50 \mathrm{C}$)	$0.05 \%{ }^{\circ} \mathrm{C}$ for Current ($10 . .120 \%$ of Rated Value) $0.025 \%{ }^{\circ} \mathrm{C}$ for Voltage (10.120% of Rated Value)
Error change due to variation of an influence quantity	2 * Error allowed for the reference condition applied in the test.
Display	
LED	3 line 4 digits, Display height : 14 mm
Annunciation of units Update rate	Bright LED s from Back side of screen
	Approx. 1 seconds
Controls	
User Interface	4 Keys
Standards	
EMC Immunity	IEC 61326
	$10 \mathrm{~V} / \mathrm{m}$ min-Level 3 industrial low level electromagnetic radiation environmen
	IEC 61000-4-3.
Safety	IEC 61010
IP for water \& dust	IEC 60529
Isolation	
Dielectric voltage withstands	3.3 kV RMS 50 Hz for 1 minute
test between circuits and accessible surfaces	Among all electrical circuits
Environmental conditions	
Operating temperature	0 to 50 C
Storage temperature	-25 to $+70^{\circ} \mathrm{C}$
Relative humidity	$0 . .90 \% \mathrm{RH}$ (Non condensing)
Warm up time	3 minute (minimum)
Shock	15 g in 3 planes
Vibration	$10 . .55 \mathrm{~Hz}, 0.15 \mathrm{~mm}$ amplitude
Enclosure front	IP 50
Enclosure back	1 P 20
Enclosure	
Style	$96 \mathrm{~mm} \times 96 \mathrm{~mm}$ DIN Quadratic
Material	Polycarbonate Housing,
Terminals	Screv-type terminals
Depth	$<60 \mathrm{~mm}$
Weight	300 grams Approx.

Delta 3 LINE

Delta 3Line - 14 mm DISPLAY

Programmable Multi-function Digital Panel Meter

Installation \& Operating Instructions
Section Contents
Introduction
Measurement Reading Screens
Programming
3.1 Password
3.2 Sest Up Screens
3.2.1 Systen Type
3.2.2 Potential Transtormer Primary value

3.2.4 Potential Transtormer Secondary value
3.2.5
Current Transormer Secondary value
3.2.6 Reset
3.2.7 Auto Scrolling
3.2 .8 Number of poles
3.29
Relay
4. Run hour
6. Number of interruptions
7.1 EMC Installation Reequirements
7.2 Case Dimensions and Panel Cut-out
7.3
$\begin{array}{ll}\text { 7.3. } & \text { Wiring } \\ \text { 7.4 } & \text { Auxiliary Supply }\end{array}$
7.5 Fusing
7.6 Earth $/$ Ground
8. \quad 7.6 Earth $/$ Ground Connections
$\begin{array}{ll}\text { 8. Connection Diagrams } \\ 9 . & \text { Optional Pluggable Modul }\end{array}$
10. Specification

15000828_Rev. C $15 / 05 / 2013$

1. Introduction

The Detta 3 Line is a panel mounted $96 \times 96 \mathrm{~mm}$ DIN Quadratic Digital Panel Meter
for the measurement of important electrical parameters Sike AC Voltage, AC Current, RPM, Frequency.
The instrument
The instrument integrates accurate measurement technology (All Voltages \& current
measurements
EED
Usishen
True
RMS

The front panel has four push buttons for user
The front panel has four push buttons tor user
interace to scroll thoughte aveial parameters.
These four keys has tunction as follow:
These four keys has tunction as follow
2. A: Select phase Current Parameters Display. 3. Θ : Select \& Scrolls through Time parameters :
on hr, Run Hr \& number of Aux. Supply interuptions. Rotation per minute (RPM)
4. Sys : Select \& Scroll through System parameters :
Voltage, Current, Frequency, max and min Values.

The Delta 3 line come with 14 mm display and units annunciated from back side, which enables to take reaing trom tong
Annunciators is overcome with Delta 3 Line.

2. Measurement Reading Screens
normal operation the user is presented with the m
 iteruptions and "Sys" key for System Voltage, system Current, Frequency, Max Values and min. Values of system Voltage and Current.

2 Case Dimension and Panel Cut Out

8. Connection Diagrams

With optional Limit switch.

7.3 Wiring

Input connections are made directly to screw-type terminals with indirect wire pressure. Numbering is clearly marked on the connector. Choice of
cable should meet local regulations. Terminal for both Current and Voltage
 Note : It is recommended to use wire with lug for connection with meter

7.4 Auxiliary Supply

Delta 3 Line should ideally be powered from a dedicated supply, however
it may be powered from the signal source, provided the source remains within it may be powered from the signal source, provide
the 1 inits of the chosen auxiliary voltage range.
7.5 Fusing
7.6 Earth/Ground Connections

For safety reasons, $C T$ secondary \mathbf{c}
accordance with local regulations.
ctions should be grounded in

T Trip point edit

* denotes that the decimal point will be flashing.

The 100 s digit will scroll between 0 and 1,10 s digit will
scroll from 1 to 9 if 100 s digitit sset to scroll from 1 to 9 if 100 s digiti is set to 0 .
If 100 s digitis set to 1 , the 10 s digit will
Thus, the trip point can be set as \% of the Nomina vale
Thus, the trip point can be set as $\%$ of
of selected parameter (Refer Table 2).
Select the desired trip point as displayed percentage of Set range of the parameter. Atter

Note: Fixed hysteresis 5% of trip point
4. Run Hours

This screen shows the total no. Of hours the This scien ennocd Even if the Auxiliars supply
Load is ocnnected. is interruped, count of Run hour will be maintiane
In internal memor y displayed in the format
 005578..56, then it it indicates 56678 hours and 56 minutes.
After 99999.59 Atter 999999.59 count
Sart tagain from zero.
To reset run hour count manual To reset run hour
Reset (3.2.6).
5. ON Hours

This screen shows the total no. of hours the
Auxiliary supoly is ON. Even if the Auxiiary

 displayed count is 014678.23 , then it indicates
14678 hours and 23 minutes. After 999999.59 count of of on hours, display will Start again from zero.
To reset ON hour coun ${ }_{\text {Reset }}(3.2 .6)$.
6. Number of inerruptions

This screen displays the total no. Of times the auxiliary supply was inerrupted. Even if the auxiliay
Supply is interuped, the count will be maintained Supply is interuped
In interal memory.
To reset N. of
Reset (3.2.6).

7. Installation

Mounting of Delta is featured with easy "Clip- in" mounting. Push the meter in panel
slot (size 92×92 mm), it will llick fit ithto panel with the four integral retention clips on two
sid requiried meled ditional surport is

The Delta 3 Line should be mounted in a reasonably stable ambient
temperature and where the operating temperature is within the range

7.1 EMC Installation Requirements

This product has been designed to met the certification of the EU directives
when installed to a good code of practice for EMC in industria enviroments,
 RF suppression components, such as sernit
he event that $R F$ f fields cause problems.

Avoid routing leads alongside cables and products that are, or could be, a
source of infereference

operation.
The unrent inputs of these products are designed for connection in to
systems via Current Transformers only, where ene side is syrounded. ESD precautions must be taken at all times when handing this product.

New / Change Password, first digit entered, prompting for second digit.
('Decimal point indicates that this will be flashing). Pressing the "V" key will scroll the value of second digitit from O through to os, the value will wrap fomm
oround to Pround to 0 .
Pressing the "A" "ey to advance the operation to the
Next digit and sets the first digitit in tits case to "5"
 this wil be fe lashing).
Pressing the "V" kev will scroll the value of the tirid digit
Trom Otrough to9, the value will wrap tom 9 round tio

New / Change Password, third digit entered, prompting
for foutht digit. (' denotes that decimal poont will be
foshin)
Nor fourth
flashing).
Pressing the "w" key will scrall the value of hhe fourth
digit tho
dround throught to 9 , the value will wrap foom
Pressing the "A " key to avancuct tite operation to the
New Password Confimed" and sels the fouth digith nthis case to " 7 ".

New Password confirmed.

Pressing the "V" Key will return to the
Newichange Password."
Pressing the " A " key will advances to the Set up
screen.see section 32 .
v © © \boldsymbol{x}
3.2 Set Up Screen 3.2.1. System Type

Pressing " A " key accepits present value and advances to the "Potential transtormer Primary Value Edit" menu Pressing "V" Key will enter the System type edit mode

System Type Edii

This screen appears only if"V" key is pressed in previous
Pressing "V" scrolls through the values available
Pressing "A" Key advances to the system type

3.2.2. Potential Transformer Primary Value

The nominal full scale volage which will be displayed as the Line to Line voltage for al system types.

Note : PT Values must be set as Line to Line Voltage for Primary as well as Secondary for all system types (3P3W/3P4W/1P2W).

Potential Transformer Primary Digit Edit Pressing the "v" key will scroll the value of the most
significant digifit rom 0 through to to 9 unless the presently displayed Potential Transformer Primary value together with the Current Transformer Primary value previously Set, would result in a maximum power of freater than
1000 MVA per phase in that case the digit range will be 1000 MVA per phase in that case iggit range will cursor position and advanceses the cursors to the next
Less significant digit.

Note: :the flassining decimal point indicatest the cursor position, stiteady decimal point will be persesent

When the least significant digit has
Primay V Vaue Confirmaion stage.

Potential Transormer Primary Value Conilmair This screen will only appear following an edit of the
Potential Transtormer Primary Value. If the set value is to be corrected, pressing the " V " key will return to the Potenia fransormer Primary valu
Edit stage with the digits flashing indicating that the Editit stage with the digits flashing indicating that the
Multipier (decimal point position) should be selected Pressing the " A " key sets the displayed value and wiit
advance to the Current Transormer Primary Value. (See section 3.23 .3 .)

Pressing the "V" key will enter the "Curren
Transtormer Primary Value Editi" mode. Transformer Primary Value Edit" mode.
Pressing the $\mathrm{A} A$ " key will accept the present value Pressing the 'A" key wif accepp the present value
And Advances to the "Potential Transormer Secondary Value edit screen (See section 3.2.4)

Current Transtormer Ratio Edit
Pressing $v v$ key will advance the
Pressing "V" key will advance the Most Significant
Digit from 0 through to 9 , unless the Current
 Transformer Primary Value results in a maximum
power of greater than 1000 MVA in which case the power of greater than 1000 MVA in which case the
digit range will be restricted, the value will wrap.
 (max value) then prim
restricted to $1736 A$.
Pressing the " "" Key will avvance to the next least
significant digiti. (" Denotes that de Pressing the "A" Key will advance to the next least
signifinat digit. (" Denotes that decimal point will be
flashing).

The "Maximum Power" restriction of 1000 MVA refers to 120% of nominal current and
120% of nominal voltage, ie, 6944 MVA nominal power per phase.
When the least siginicicant digit had been set, pressing the "A" key will advance to the
The minimum value allowed is 1
zero when " A " key is pressed.

	$\underline{L} P_{r}$
	1000
	5Et
	v A - 5

Transformer Primary Value, when "A A " key is pressed after
St Transtormer Primary vaiue, when "A
Setting value of least significant Digit. Pressing the "V" key will return back to CT primary edit
Menn. Pressing the "A" "key sets the displayed value and then
advañe tot the "Petential Transormer Secondary Value
Edit" menu (See section 3.24) Edit" menu. (See section 3.2 .4).

 When Value of least significant Digit is set, Pressing of
${ }^{A}$ A key advances the screento PT secondary value Confirmation" Screen.
Set the secondarn value as per following ranges for better
Accuracy Results:

$\begin{array}{c}\text { Input Voltage } \\ \text { Range } \\ \text { (VL-L) }\end{array}$	$\begin{array}{c}\text { PT Secondary } \\ \text { Range to be set (VL-L) }\end{array}$
$\begin{array}{c}1.15 \mathrm{~V}\end{array}$	$10 \mathrm{~V}-125 \mathrm{~V}$
$125 \mathrm{~V}-25 \mathrm{~V}$	$12 \mathrm{~V}-250 \mathrm{~V}$
$\frac{251 \mathrm{~V}-500 \mathrm{~V}}{}$	$251 \mathrm{~V}-500 \mathrm{~V}$

PT Secondary value confirmation
This screen will only appears following an edit of PT
secondary value.
If secondary value shown is not correct.pressing the
V" key will return to PT secondary edit stage. Pressing "A" key set seonday edr stage.

v A © 조

v A ©
3.2.6. Resets

The following screens allow the users to reset the run hour, ON Hour, No. O
Interuptions, Min and Max. Values of Voltage and Current.

3.2.8 No. of Poles Selection

This screen enables to Set No. of poles on a Generator of which RPM is to be
measured and to which the instrument is connected to measure its output parameters

No. of poles Confirmation
Pressing "V" enters back to No. of poles edit
Menu.
Pressing " A " sets the number on screen, 4 in this Pressing "A" sets the number on screen, 4 in this
Case, as number of poles of generator. Then it will come out of set Up menu, and enter into
normal operation mode.

Trip parameter edit screen
Pressing "V" key scrolls the parameters one
as per table 2
Selecting oo(None) disables relay function
Pressing "A" selects the parameter and enters the
In this case displayed number 10 will select VL1-L2
In this case displayed number 10 w .
For relay monitoring as per table 2 .

No.	Measud	3P4W	3PW	T	Set range	Value
00	None	\checkmark	\checkmark	\checkmark		
01	Voltage L1	\checkmark	x	\checkmark	10-120\%	Vnom (L-N)
02	Voltage L2	\checkmark	x	x	10-120\%	Vnom (L-N)
03	Voltage L3	\checkmark	x	X	10-120\%	Vnom (L-N)
04	CurrentL1	\checkmark	\checkmark	\checkmark	10-12\%	Inom
05	Current L2	\checkmark	\checkmark	x	10-120\%	Inom
06	Curent L3	\checkmark	\checkmark	x	10-120\%	Inom
07	Frequency	\checkmark	\checkmark	V	10-100\%	$66 \mathrm{~Hz}^{\text {¹ }}$
10	Voltage VL1-L2	\checkmark	\checkmark	x	10-120\%	V (L-L)
11	Voltage VL2-L3	\checkmark	\checkmark	x	10-120\%	$\mathrm{Vn}(\mathrm{L}-\mathrm{L})$
12	Voltage VL3-11	v		x	10-120\%	$\mathrm{Vn}(\mathrm{L}-\mathrm{L})$
13	System Votage	\checkmark	\checkmark	X	10-120\%	Vnom
14	Ssysim Curent	\checkmark	\checkmark	x	0-120\%	Inom

Trip parameter confirmation screen.
This scrieen will appear only after parameter edit. Pressing " v " will r -enter the parameter selection menu
Pressing " A " will set the parameter for relay trip and Pressing "A" will set the parameter for relay trii
then it will enter the trip point selection menu.

Trip point selection
This screen will not appear if parameter None (0) is
Pressing "V" key will enter trip point edit screen. Pressing "A" key will set displayed value as trip point
and exit set up.

