Operating Instructions
Measuring Transmitter RishDucer PT 602


4
rishaвн

## Operating Instructions

## Measuring Transmitter RishDucer PT 602



Read first and then $\qquad$
3. Ordering information
5. Overview of the parts
7. Exchanging frontplates
8. Withdrawing and inserting the device
$\qquad$
10. Electrical connections..
s.........
11. Programming the transmitter

## 1. Read first and then...

The proper and safe operation of the device assumes that the Operating Instructions ar read and the safety warning given in the various Sections.
9. Mounting
10. Electrical connections
12. Commissioning
are observed.
The device should only be handled by appropriately trained personnel who are familiar with it and authorise to work in electrical installations
2. Scope of supply (Fig. 1)


## Transmitter (1)

2 Pull-out clamps (2) (for withdrawing the device from its housing)
Front plates (3) (for notes)
1 Operating Instructions (4) in English
3. Ordering infromations

| DESCRIPTION | MARKING |
| :---: | :---: |
| 1. Mechanical design Housing S17 | 602-1 |
| 2. Number of measuring inputs/ measuring ranges <br> With 1 meas. input / meas, range With 2 meas. input / meas, ranges | $\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$ |
| 3. Version / Power supply <br> Standard, 24. 60 V DC/AC Standard, $85 \ldots 230 \mathrm{~V}$ DC/AC | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ |
| 4. Connection mode (applies to inputs 1 and 2) <br> Two-wire connection RL1[ ] RL 2 [ ] <br> Three-wire connection Four-wire connection | $\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$ |
| 5. Measuring input 1 <br> Meas. range $0 . . .100$ C, configurable <br> Measuring range <br> [C] $\square$ <br> -150 to +800 C. span min. 50 K , max. 700 K | $\begin{aligned} & 1 \\ & 9 \end{aligned}$ |
| 6. Measuring input 2 <br> Measuring input 2 not used <br> Meas. range $0 . . .100$ ¿, configurable <br> Measuring range 2 <br> [ C ] <br> Possible measuring ranges see measuring input 1 | $\begin{aligned} & 0 \\ & 1 \\ & 9 \end{aligned}$ |
| 7. Measuring output 1 or 2 <br> (applies to outputs 1 and 2) <br> Output $0 / 4 \ldots . .20 \mathrm{~mA}$ (configurable by plug-in jumpers) <br> Output $0 . . .10 \mathrm{~V}$ <br> Output 4/0...20ma (configurable by plug-in jumpers) | $\begin{aligned} & 2 \\ & 3) \end{aligned}$ |
| 8. Certificate <br> Without test certificate With test certificate | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ |

## 4. Brief description

The measurement transmitter RishDucer PT 602 converts the resistance of a Pt 100 feeler to a linear output signal to the proportional to the temperature
Depending on the version of the unit, the Pt 100 can be connected by two, three or four wires.

The desired measuring range can be set within wide limits with the aid of DIP switches and a potentionmeter

## 5. Overview of the parts

Figure 2 shows those parts of the device of consequence for mounting, electrical connections and other operations described in the Operating Instructions.

fig. 2. The two-channel version of RishDucer 602
(3) Front label
(5) Type label

Programming connector
Fixing bracket
Opening for Pull-out clamps (for opening the housing)
(9) Top-hat rail $35 \times 15 \mathrm{~mm}$ or $35 \times 7.5 \mathrm{~mm}$ (EN 50 O22)
(10) Terminals
(11) Terminals

ON Green LED's for indicating device standing by
ON Green LED's for indicating device standing by short-circuit

## 6. Technical data

Measuring input $\Theta$
Temperatures with
resistance thermometer
for two-wire
connection:
for three- or four-
Min. span
Max. span
Measuring ranges:
Feeler current
Max. lead
resistance:

150 to +800 c
-170 to $+800 c$
50 K
700 K
Set within wide limits on DIP switches and a potentiometer
< 1 mA
25 per lead (loop resistance 50 )

## Measuring outputs $\bigcirc$

| DC current: | $0 / 4 \ldots 20 \mathrm{~mA}$ <br> switchable |
| :--- | :--- |
| Burden voltage: | 10 V |
| External resistance: | $\mathrm{R}_{\text {ex }} \mathrm{Max} . \quad 500$ <br> DC voltage: |
| $0 \ldots 10 \mathrm{~V}$ |  |
| Load capacity: | $\mathrm{R}_{\text {ex }} \mathrm{min} . \quad 2 \mathrm{k}$ |
| Residual ripple of <br> output current: | $<1.5 \%$ p.p. |
| Response time: | $<500 \mathrm{~ms}$ |

Open-circuit sensor circuit and short-circuit supervision ${ }^{\text {TH }}$

| Pick-up level: | - At open-circuit approx. 1 to 400 k |
| :---: | :---: |
|  | - At open-circuit approx. 0 ... 30 |
| Fault signalling mode: | - Frontplate signals <br> Red LED for signalling fault |
|  | - Output signal at $0 / 4 \ldots 20 \mathrm{~mA}$. output approx. 25 mA at $0 \ldots 10 \mathrm{~V}$, output approx. 12.5 V |

Power supply $\mathrm{H} \rightarrow \mathrm{O}$
AC/DC power pack (DC and $45 \ldots 400 \mathrm{~Hz}$ )
Table 1: Rated voltages and permissible variations

| Nominal voltages $\mathrm{U}_{\mathrm{N}}$ | Permissible variation |
| :--- | :---: |
| $24 \ldots 60 \mathrm{~V}$ DC / AC | DC $-15 \ldots+33 \%$ |
| $85 \ldots 230 \mathrm{~V}^{1} \mathrm{DC} / \mathrm{AC}$ | AC $15 \%$ |

${ }^{1}$ An external supply fuse must be provided for DC supply voltage
$>125 \mathrm{~V}$.

Power consumption: 1.8 W resp. 3.4 VA
Accuracy data (acc. to DIN/IEC 770)
Basic accuracy: Max. error 0.5\% including linearity and repatabilty errors

## Installation data

Terminals:

## DIN/VDE 0609

Screw terminals with wire guards for light PVC wiring and max. $2 \times 0.75 \mathrm{~mm}^{2}$ or $1 \times 2.5 \mathrm{~mm}^{2}$
Screw M2.5 torque is $0.4 \mathrm{~N}-\mathrm{m}$
Permissible vibrations: 2 g acc. to EN 60 068-2-6
Shock:

Electrical insulation: All circuits (measuring inputs/ measuring outputs / are electrically insulated.

## tandards

Housing protection
(acc. to IEC 529 resp
EN 60 529):
40
Terminals IP 20

Electrical standards:
Test voltage:
Acc. to IEC 1010 resp. EN 61010
Power supply versus

- all $3.7 \mathrm{kV}, 50 \mathrm{~Hz}$
$-\quad$ all
1 min.
Measuring inputs versus:
Measuring outputs
$2.3 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$
Measuring inputs versus: Measuring outputs
$2.3 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.
Measuring inputs 1 versus:
Measuring outputs 2
$2.3 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$.


## Environmental conditions

Commissioning
emperature: $\quad-10$ to +55 C
Operating temperature: -25 to +55 C
Storage temperature: -40 to +70 C
Anuual mean
relative humidity: $\quad 75 \%$

## 7. Exchanging frontplates



[^0]Apply gentle pressure to the transparent cover as shown in Fig. 4 until pops out on the opposite side. The label in the
cover can be replaced and used for notes.

After replacing the label in the transparent cover, the trans parent cover can be snapped into the front of the device again. This is done by inserting it behind the edge at the oottom and pressing it gently down and to the rear with the finger unti it snaps into place (right side of Fig. 3)
8. Withdrawing and inserting the device

Fig. 5


Insert the pull-out clamps S17 (2) into the openings (9) until they snap into place. Withdraw the front part together with the main PCB out of the housing.

To reassemble the unit, insert the front part together with the main PCB into the housing until the swallow-tailed sections engage in each other.

## 9. Mounting

The RishDucer PT 602 can be mounted either on a top-hat rail or directly onto a wall or mounting plate.

```
Make sure that the ambient tempeture stays
    within the permissible limits:
    -25 and +55%
```

9.1 Top-hat rail mounting

Simply clip the device onto the top-hat rail (EN 50 022) (see Fig. 6).


Fig. 6. Mounting on top-hat rails $35 \times 15$ or $35 \times 7.5 \mathrm{~mm}$

### 9.2 Wall mounting

Drill 2 holes in the wall or panel as shown in the drilling pattern (Fig.6). Now secure the power pack to the wall or panel using two 4 mm diameter screw.


Fig. 6. Drilling pattern.
The wile pressing the latch (18) in the base of the device (Fig. 8, left), pull out the transmitter securing brackets (10). Now secure the transmitter to the wall or panel using two 4 mm diameter screws.


Note :
To return the brackets to their original positions, the latch (19) in the base of the device has to be depressed before applying pressure to the securing brackets (10) (see Fig. 7, right).

## 10. Electrical connections

The electrical connections are made to screw terminals which are easily accessible from the front of the transmitte and can accommodate wire gauges up to $1 \times 2.5 \mathrm{~m}^{3} \mathrm{~m}$.


Make sure that the cables are not live when making the connections!
The 230 V power suply and 250 V contact output is potentially dangerous.

Note that , ..
... the data required to carry out the prescribed measurement must correspond to those mark on the nameplate of RishDucer PT 602 $\rightarrow$ input $\mathrm{E}, \bigcirc \rightarrow$ output A and $\rightarrow$ Opower supply H) !
the total loop resistance connected to the output (receiver plus leads) does not exceed the permissible value $R$ See "Measurin output" in Section "5. Technical data"for the maximum values of R "
the signal input and output cables should be twisted pairs and run as far as possible away from heavy current cables !
In all other respects, observe all local regulations when selecting the type of electrical cable and installing them

Table 2: Connections of the measuring input leads E1 and E2

| Measuring inputs |  | Connecting mode* | Connecting diagram <br> Terminal arrangement |
| :---: | :---: | :---: | :---: |
|  | Measuring input $@$ E1 | Two-wire connection |  |
|  |  | Three-wire connection |  |
|  |  | Four-wire connection |  |
|  | Measuring input $\oplus$ E1 | Two-wire connection |  |
|  |  | Three-wire connection |  |
|  |  | Four-wire connection |  |
|  | Measuring input $\Theta$ E2 | Two-wire connection |  |
|  |  | Three-wire connection |  |
|  |  | Four-wire connection |  |

RishDucer PT 602 units with the designations 602-1XX1 and 602-1XX2 can operate with either two-or three wire connections, but units with the type designation 602-1XX3 only operate with a four-wire connection.

## Notes

### 10.1 Connection to resistance thermometers

10.1.1. Two-wire connection (connection diagram Table 2) Connect terminals 3 and 8 on the single-channel version for a two-wire connection to the feeler.
Connect terminals 3 and 8 and also 1 and 6 on the twochannel version. A resistance up to 25 and 6 on the permissible which is taken into account during configuration (see Section 11.2.2.)
10.1.2. Three-wire connection (connection diagram Table 2)

It is assumed that the three leads of a three-wire connectio have identical resistance and no compensation is necessary.
The lead resistance must not be grater than 25 per lead.
10.1.3. Four-wire connection (connection diagram Table 2)

The four-wire measurement is independent of lead resistance within wide limits and therefore no compensation is necessary The lead resistance must not be greater than 25er lead.

### 10.2 Measuring output leads

Connect the output leads for output A1 to terminals 13(-) and $14(+)$ and for output A2 (field indicator) to terminals $11(-)$ and $12(+)$ acc. to Section "10. Electrical connections".
Note! The maximum permissible external resistance Rer max. of the RishDucer PT 602 must not be exceeded (see Section "6. Technical data")
10.3 Connecting the power supply

Connect the power supply to terminals 5t ) and 10 ( ) acc. to Section "10. Elecrtical Connections"
A two-pole switch must be including in the supply connection where facility for switching RishDucer PT 602 is desired

Note: $\quad$ An external supply fuse must be provided for DC supply voltage > 125 V .

## 11. Configuration

The coarse calibration is performed on the DIP switches (Fig, 8) and the fine calibration on the potentiometers marked "Zero" and "Span" (see Section"10. Electrical connection"). It is necessary to remove the cover to set the DIP switches (see Section"8. Withdrawing and Inserting the device").


Fig.8. DIP switches, soldered jumper and jumper plug configuration the RishDucer PT 602 (illustration for the preferred single-channel version).

### 11.1. Swith positions S1 and soldered jumper ( ${ }^{\boldsymbol{1}}$ ) for connection mode of the resistance thermometer



As can be seen from the following table, measurement transmitters 602-1... 1 and 602 $1 . .2$ can be used for two and three-wire connection. The device must be recalibrated e connection mode is changed.
Devices with the type designation 602-1...3 re only intended for a four-wire connectio and cannot be changed.

| Connection mode | Lead resistance $R_{L}$ | Soldered jumper | Switch position S1 |
| :---: | :---: | :---: | :---: |
| Two-wire connection | $\begin{aligned} & \text { R,total } \\ & 0 . . .25 \end{aligned}$ | $\underset{\text { closed }}{\boldsymbol{\dagger}}$ | $\square^{\text {on }}$ |
|  | $\begin{array}{\|l\|l} \hline \text { R.total } \\ >25 \ldots . .50 \end{array}$ |  | $\square^{\text {OfF }}$ |
| Three-wire connection | $\begin{array}{\|c\|} \hline 25 \\ \text { per lead } \end{array}$ | $\begin{gathered} \text { 卓 } \\ \text { open } \end{gathered}$ | $\square^{\text {ON }}$ |
| Four-wire connection |  |  |  |

11.2. Switch positions (S2...S7) for measuring range start value

### 11.2.1. Three and four-wire connectio

Set DIP switches S2...S7 to the positions given in the following table for the desired minimum value of the measuring range.

Example 1:
Minimum value of the measuring range 820 C Switch positions "ON-ON-OFF-OFF-OFF-ON"

| value C | S2 ．．．S7 | Measuring range start value C | S2 ．．．S7 |
| :---: | :---: | :---: | :---: |
| －170 ．．．－149 |  | 295 ．．． 301 | ［ |
| －149 ．．．－119 | E¢B | 301 ．．． 306 |  |
| －119 ．．．－98 |  | 306 ．．． 315 |  |
| －98 ．．．－76 | E日E | 315 ．．． 326 |  |
| －76 ．．．－58 | B8097 | $326 . . .335$ |  |
| －58 ．．．-41 | 틈 | 335 ．．． 344 |  |
| －41 ．．．－20 | 븜 | $344 \ldots 350$ |  |
| －20 ．．． |  | 350 ．．． 359 | 可可吅 |
| 0 ．．． 24 | － | $359 . . .367$ |  |
| $24 . . .47$ | TEI | 367. |  |
| 47 ．．． 64 |  | 375．．． 384 |  |
| 64 ．．． 82 | － | 384 ．．． 393 |  |
| 82 ．．． 99 |  | 393．．． 400 | 可吅曋 |
| $99 . . .116$ | E可 | 400 ．．． 408 | 可吅吅 |
| 116 ．．． 131 | Breb | $408 . . .415$ | T |
| $131 . . .146$ | Brabi | 415 ．．． 422 |  |
| $146 . . .163$ |  | 422 ．．． 429 |  |
| 163 ．．． 180 |  | $429 . . .435$ |  |
| 180 ．．． 197 |  | 435 ．．． 443 |  |
| 197 ．．． 209 | Brever | 443 ．．． 450 |  |
| 209 ．．． 219 | B | 450 ．．． 456 | 플 |
| 219 ．．． 228 |  | 456 ．．． 462 |  |
| 228 ．．． 240 | Brate | 462 ．．． 466 |  |
| 240 ．．． 251 |  | $466 . . .470$ |  |
| 251 ．．． 265 | B970］ | 470 ．．． 476 |  |
| 265 ．．． 275 | 回 | 476 ．．． 481 |  |
| 275 ．．． 281 |  | 481 ．．． 488 |  |
| 281 ．．． 286 |  | 488 ．．． 494 |  |
| 286 ．．． 291 |  | $494 . . .499$ |  |
| $291 . . .295$ | －7909 | 499 ．．． 500 |  |

## 11．2．2．Two－wire connection

To determine the switch positions for the desired minimum value of the measuring range，add the resistances of the sensor and the leads（ $R$ total）．If the total lead resistance
$(R$, total）exceeds 25 subtract 25 ．

Example 2：
Measuring range $0 . . .1000 \mathrm{C}$
Total lead resistance R 35 （subtract 25 ）
The minimum value is given by sensor + lead resistance
$R_{\text {otal }}=100+10$

At 260 C ，a Pt 100 has a resistance of 110 ．The minimum value of the measuring range that has to be set on DIP switches S 2 ．．． $\mathrm{S7}$ is therefore 260 C i．e．the switches position

11．3 Switch positions for setting the span（S8．．．S13） Select the desired span in the following table and place Select the desired span in the following table and place
switch S8 in block 1 and switches S9．．．S13 in block 2 in the corresponding positions．
Example 3：
Measuring span 6160 C
Switch positions＂ON－ON－ON－OFF－OFF－ON＂

| Measuring span C | S8 ．．．S13 | Measuring span C | S8 ．．．S13 |
| :---: | :---: | :---: | :---: |
| 50 ．．． 68 | 可 | ．．． 445 |  |
| ．．． 85 | 可 | ．．． 450 |  |
| ．．． 101 |  | ．．． 458 | 國吅回 |
| ．．． 122 |  | ．．． 466 |  |
| ．．． 140 |  | －． 477 | 國吅吅 |
| ．．． 150 |  | ．．． 485 | 可可吅吅 |
| ．．． 159 | 國 | ．．． 490 |  |
| ．．． 174 |  | ．．． 494 |  |
| ．．． 193 |  | ．．． 502 |  |
| ．．． 207 |  | ．．． 512 |  |
| ．．． 220 | （1） | ．．． 519 | 包吅吅 |
| ．．． 237 | 可［80］ | ．．． 526 | 可吅昭 |
| ．．． 254 |  | ．．． 535 | 可吅吅 |
| ．．． 271 |  | ．．． 544 |  |
| ．．． 288 |  | ．．． 553 |  |
| ．．． 303 |  | ．．． 561 |  |
| ．．． 318 |  | ．．． 570 |  |
| ．．． 329 |  | ．．． 578 |  |
| ．．． 339 |  | ．．． 584 | 或回回回 |
| ．．． 353 |  | ．．． 589 | 國 |
| ．．． 364 |  | ．．． 597 |  |
| ．．． 370 | 可 8 Her | ．．． 603 | 可吅㫜 |
| ．．． 376 |  | ．．． 606 |  |
| ．．． 387 |  | ．．．． 610 |  |
| ．．． 399 | 可［80］ | ．．． 616 |  |
| ．．． 408 |  | ．．． 623 |  |
| ．．． 417 |  | ．．． 628 |  |
| ．．． 423 | 可 | ．．． 633 | 可可佰 |
| ．．． 428 |  | ．．． 640 |  |
| ．．． 434 |  | ．．． 646 |  |
| ．．． 440 |  | ．．． 700 | 可明E日 |

11．4．Switch positions（S14．．．S16）for linearisation
A switch combination has to be set to linearise the range that depends on the minimum value of the measuring range（TA） and the temperature range（TE－TA）．Fig． 9 shows how the switch positions are determined for the example of a measuring range of $100 \ldots 600^{\circ} \mathrm{C}$ ．The correct switch positions
for this example are＂OFF－ON－ON＂ for this example are＂OFF－ON－ON＂


Fig．9．Switch positions（S14．．．S16）for linearisation TA $=$ Measuring range start value
TE $=$ Measuring range end value

11．5 Jumper plug positions for output signal range
There is a jumper plug for each channel that enables the output current range to be selected（see Fig．10）．

| Current <br> $[\mathrm{mA}]$ | Plug－in－jumpers |
| :---: | :---: |
| $0 \ldots 20$ | $\bullet \bullet \cdot$ |
| $4 \ldots 20$ | $\bullet \bullet$ |



## 12. Commissioning

Switch on the measuring inputs and the power supply. The greed LED's lights continuously after switching on.
The power supply unit must to capable of supplying a brief current surge when switching on. The instruments presents a low impedance a the instant of switching which requires a current Istart of ..
... Istart 160 mA for the version with a power supply range of $24-60 \mathrm{~V}$ DC/AC or
Istart 160 mA for the version with a power supply range of $85-230 \mathrm{~V}$ DC/AC

## 13. Maintenance

No maintenance is required

## 14. Releasing the transmitter

Release the transmitter from a top-hat rail as shown in

15. Dimensional drawings

Fig. 12. in housing S17 clipped onto a top-hat rai

$$
\begin{aligned}
& \text { Fig. } 12 . \\
& (35 \mathrm{c} 15 \mathrm{~mm} \text { or } 35 \times 7.5 \mathrm{~mm} \text {. acc. to } \mathrm{EN} 50 \text { 022). }
\end{aligned}
$$



## Notes


[^0]:    Fig. 4 Left: : Removing the transparent cover
    Right: Inserting the transparent cove

