Application:

The transducer RISH CON - CA/CV (Fig. 1) converts a sinusoidal or distorted AC Current or AC Voltage into a load independent DC Current or a load independent DC Voltage proportional to the measured value. Output signal generated is proportional to the root mean square value of the input Current or Voltage.

Salient Features:

- True RMS measurement.
- Accuracy class 0.2 as per International Standard IEC/EN 60 688.
- Auxiliary Power Supply:
 1) 40 V-300 V AC/DC.
 2) 24 V-60 V AC/DC.
- Output Response Time < 250 ms.
- Fast and easy installation on DIN RAIL or onto a wall or in panel using optional screw hole bracket.
- Connection Terminal: Conventional Screw type.
- Narrow housing, 22.5 mm / saves space and costs.

Product Features:

- **Measuring Input:** AC Current/ Voltage input signal, sine wave or distorted waveform.
- **Auxiliary Power Supply:**
 1) 40 V-300 V AC/DC.
 2) 24 V-60 V AC/DC.
- **Analog Output:** Isolated analog output, which can be Voltage or Current.
- **Accuracy:**
 Output signal accuracy class 0.2 as per International Standard IEC/EN 60 688.
- **LED Indication:** LED indication for power ON.
- **Output Response Time:** < 250 ms.

Mode of Operation:

Input signal X is separated from the mains network by using a transformer. The following mathematical expression is formed using RMS value computer

\[Y_{eff} = \frac{1}{(1/T)} \int X^2 \, dt \]

The transformation properties of the measuring transducer are determined in the succeeding characteristics circuit. The output amplifiers transforms the measuring signal into an impressed output signal Y.

Symbols and their meanings:

- **X** = Input AC Voltage / AC Current.
- **Y** = Output DC Voltage / DC Current.
- **H/L** = Power supply.
- **F_N** = Nominal Frequency.
- **R_N** = Rated value of output burden.
- **U_N** = Nominal input voltage.
- **I_N** = Nominal input current.

Fig. 1. Transducer RISH CON - CA/CV.

Fig. 2. Block Diagram.
RISH \textit{CON} - CA/CV
TRUE RMS CURRENT / VOLTAGE TRANSDUCER

Technical Specifications :

Measuring Input X:

Voltage Transducer (RISH \textit{CON} - CV):
Final value of Nominal input Voltage U_N (X2, AC RMS)

$63.5 \leq U_N \leq 500$ V.

Nominal Frequency F_N

50 or 60 Hz.

Nominal input Voltage burden

< 0.6 VA at U_N.

Overload Capacity:

$1.2 \times U_N$ continuously,

$2 \times U_N$ for 1 second, repeated 10 times at 10 second intervals.

Current Transducer (RISH \textit{CON} - CA):
Final value of Nominal input Current I_N (X2, ACRMS)

1 A, 5 A.

Nominal Frequency F_N

50 or 60 Hz.

Nominal input Current burden

< 0.2 VA at I_N.

Overload Capacity:

$1.2 \times I_N$ continuously,

$10 \times I_N$ for 3 second, repeated 5 times at 5 minute intervals,

$20 \times I_N$ for 1 second, repeated 5 times at 5 minute intervals,

$50 \times I_N$ for 1 second.

Measuring Output Y:

Output type

Load independent DC Voltage/Current.

Load independent DC output (Y2)

$0...10$ mA, $0...20$ mA, $2...10$ mA,

$4...20$ mA, $0...5$ V, $0...10$ V.

Output burden with DC current output

$0 \leq R \leq 15$ V/Y2.

Output burden with DC voltage output

$Y2/(2$ mA) $\leq R \leq \infty$.

Current limit under overload R=0

$\leq 1.6 \times Y2$ with Current output.

≤ 25 mA with Voltage output.

Voltage limit under R=\infty

$\leq 1.6 \times Y2$ with Voltage output.

≤ 25 V with Current output.

Residual Ripple in Output signal

$\leq 1\%$ pk-pk.

Response Time

< 250 ms.

Auxiliary Supply H:

Rated operating voltage(for high Aux. supply H)

$40...300$ V AC/DC

Rated operating range of frequency(for high Aux. supply H)

$45...50...60...65$ Hz

Power consumption(for high Aux. supply H)

< 4 VA

Rated operating voltage(for low Aux supply L)

$24...60$ V AC/DC $\pm 10\%$

Rated operating range of frequency(for low Aux. supply L)

$40...50...60...400$ Hz

Power consumption(for low Aux. supply L)

< 3 VA
TRUE RMS CURRENT / VOLTAGE TRANSDUCER

Accuracy: (Acc. to IEC/EN 60 688)

Reference Value: Output End Value Y2 (Voltage or Current)

Accuracy class: 0.2

Reference conditions for Accuracy:

- Ambient temperature: 23°C +/- 1°C
- Pre-conditioning: 30 min acc. to IEC/EN 60 688
- Input Variable: Rated Voltage Range / Rated Current Range.
- Input waveform: Sinusoidal, Form Factor 1.1107
- Input signal frequency: 50...60Hz
- Auxiliary supply voltage: Rated Value ±1%
- Auxiliary supply frequency: Rated Value ±1%
- Output Load:
 - R_N = 7.5 V / Y2 ± 1% With DC Current output signal.
 - R_N = Y2 / 1 mA ± 1% With DC Voltage output signal.

Miscellaneous: Acc. to IEC/EN 60 688

Additional Error:

- Temperature influence: ± 0.2% /10°C
- Influence of Variations: As per IEC/EN 60 688 standard.

Output characteristics:

X0 = Start value of input
X2 = End value of input=U_N/I_N
U_N = Nominal input voltage
Y0 = Start value of output
Y2 = End value of output
I_N = Nominal input current
TRUE RMS CURRENT / VOLTAGE TRANSCLUDER

Safety:

Protection Class II (Protection Isolated, EN 61 010)
Protection IP 40, housing according to EN 60 529
IP 20 ,terminal according to EN 60 529
Pollution degree 2
Installation Category III
Insulation Voltage
50Hz,1min. (EN 61 010-1)
5500V, Input versus outer surface.
3700V, Input versus all other circuits.
3700V, Auxiliary supply versus input and output circuits.

Installation Data:

Mechanical Housing Lexan 940 (polycarbonate)
Flammability Class V-0 acc. To UL 94, self extinguishing, non dripping, free of halogen.
Mounting position Rail mounting / wall mounting.
Weight Approx. 0.12kg

Connection Terminal:

Connection Element Conventional Screw type terminal with indirect wire pressure
Permissible cross section of the connection lead ≤ 4.0 mm² single wire or 2 x 2.5 mm² fine wire

Environmental:

Nominal range of use 0 °C...23 °C... 45 °C (usage Group II)
Storage temperature -40 °C to 70 °C
Relative humidity of annual mean ≤ 75%
Altitude up to 2000 m

Ambient tests:

IEC 60 068-2-6 Vibration
Acceleration ± 2 g
Frequency range 10....150...10Hz.
Rate of frequency sweep 1 octave/minute
Number of cycles 10, in each of the three axes
IEC 60 068-2-27 Shock
Acceleration 3 x 50g
3 shocks in each in 6 directions
EN 60 068-2-1/2/-3 Cold, Dry heat, Damp heat
IEC 61 000-4-2/-3/-4/-5/-6 Electromagnetic compatibility.
EN 55 011
RISH CON - CA/CV

TRUE RMS CURRENT / VOLTAGE TRANSDUCER

Electrical Connections:

<table>
<thead>
<tr>
<th>Connection</th>
<th>Terminal details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring input</td>
<td>3 _ 4</td>
</tr>
<tr>
<td>Auxiliary Power supply</td>
<td>5 _ 6</td>
</tr>
<tr>
<td>Measuring output</td>
<td>1 _ 2</td>
</tr>
</tbody>
</table>

![Connection Diagram](image)

Fig. 3. RISH CON - CV/CA Connection Diagram.

Dimensions:

![Dimensions](image)

Fig. 4. RISH CON - CV/CA Dimensions.

Note: All Dimensions are in mm.
RISH CON - CA/CV

TRUE RMS CURRENT / VOLTAGE TRANSUDER

Ordering Information:

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Transducer parameter</th>
<th>Ordering Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input Signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input Range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Ranges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0...63.5V</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>0...100V</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>0...110V</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>0...150V</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>0...220V</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>0...230V</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>0...240V</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>0...250V</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>0...300V</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td>0...330V</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0...415V</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>0...440V</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0...450V</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>0...500V</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Output Signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Ranges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0...10V</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>0...5V</td>
<td>02</td>
</tr>
<tr>
<td>3</td>
<td>Power Supply</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40...300 V AC/DC</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>24...60 V AC/DC</td>
<td>L</td>
</tr>
</tbody>
</table>

Examples:

RISH CON - CV - 14 - F - V - 01- H

RISH CON - CV is Voltage transducer, input range is 0... 500V, output is Voltage with range 0...10V, Power supply is 40...300 V AC/DC.

RISH CON - CA - 05 - F - I - 02 - L

RISH CON - CA is Current transducer, input range is 0... 5A, output is Current with range 4...20 mA, Power supply is 24...60 V AC/DC.

RISH CON - CV - 06 - F - I - 01 - L

RISH CON - CV is Voltage transducer, input range is 0... 230V, output is Current with range 0...20mA, Power supply is 24...60 V AC/DC.