P. B. 760, ERDA Road, Makarpura Industrial Estate, Vadodara-390 010, India. Gram: ELECSEARCH EPABX: +91 (0265) 2642942, 2642964, 2642377, 2642557, 2635300, 2635253, 2657784, 2657785.

Fax : +91 (0265) 2638382.

E-mail : erda@erda.org , dir@erda.org , adir@erda.org

Sheet 1 of 9

	DDRESS OF CUSTOMER	REPORT NO.: EE/MTR/02/874 DATE: 28/9/2006 CUSTOMER REF No.:RIPL/PSK/ERDA/08-2006/22,Dated:22/8/2006		
H.O. &	BH INSTRUMENTS PVT. LTD., Works: F-31, MIDC,			
SATPU	K-422 007	DATE OF	DATE OF	
INDIA	IX-422 007	SAMPLE RECEIPT	TESTING	
		24/8/2006	25/8/2006 to 27/9/2006	
Programmal	ole Multi-Transducer	SAMPLE IDENTIFICATION		
Model	: Rish Ducer MXX with Modbus 485			
Input	: 415V,5A,Frequency:50Hz	Sl. No.: 06/03/9783		
Output _A	: 4mA to 20mA (terminals 15-16)			
$Output_B$: 4mA to 20mA (terminals 17-18)	ERDA Code: EMTRWO0043347/1		
$Output_C$: 4mA to 20mA (terminals 19-20)			
$Output_D$: 4mA to 20mA (terminals 21-22)	Usage group: III		
Class Index	,			
85230VAC	/DC			
Load	: 750Ω			
Make	: Rishabh Instruments Pvt. Ltd. Nasik			

TEST DETAILS

TEST SPECIFICATION

Tests as per customer requirement and procedure as per IEC: 60688-2002

As per sheet no. 2

REMARK - The above transducer conforms to the requirements of the standard in respect of the tests carried out.

NOTE - 1) Only the tests asked by the customer have been carried out.

- 2) Output between terminal 15 & 16 is denoted as 'A' (Power output).
- 3) Output between terminal 17 & 18 is denoted as 'B' (Voltage output).
- 4) Output between terminal 19 & 20 is denoted as 'C' (Current output).
- 5) Output between terminal 21 & 22 is denoted as 'D' (Power factor output).
- 6) All tests were carried out with auxiliary voltage 230VAC.

PREPARED BY

CHECKED BY

APPROVED BY

- Note: 1. This report relates only to the particular sample received for testing, in good condition, at ERDA.
 - 2. This report cannot be reproduced in part under any circumstances.
 - 3. Publication of this report requires prior permission in writing from Director, ERDA.
 - 4. Only the tests asked for by the customer have been carried out.

P. B. 760, ERDA Road, Makarpura Industrial Estate, Vadodara-390 010, India. Gram : ELECSEARCH EPABX: +91 (0265) 2642942, 2642964, 2642377, 2642557, 2635300, 2635253, 2657784, 2657785.

: +91 (0265) 2638382.

E-mail : erda@erda.org , dir@erda.org , adir@erda.org

TEST R	EPORT NO. EE/MTR/02/874 DTI	D. 28/9/2006 SHEET 2 OF
Sl. No.	Tests	Cl. No.
1	Intrinsic error	4.2 of IEC 60688
2	Response time	5.5 of IEC 60688
3	Variations due to auxiliary supply voltage (AC)	6.2 of IEC 60688
4	Variations due to auxiliary supply frequency	6.3 of IEC 60688
5	Variations due to frequency of the input quantities	6.5 of IEC 60688
6	Variations due to input voltage	As per customer requirement & procedure as per cl.no.6.6 of IEC 60688
7	Variations due to input current	6.7 of IEC 60688
8	Variations due to power factor	6.8 of IEC 60688
9	Variations due to output load	6.9 of IEC 60688
10	Variations due to magnetic field of external origin	6.11 of IEC 60688
11	Variations due to self-heating	6.14 of IEC 60688
12	Variations due to continuous operation	6.15 of IEC 60688
13	Variations due to common mode interference	6.16 of IEC 60688
14	Influence due to overload input	As per customer requirement and procedure as per cl.no.6.18 of IEC 60688
15	Test for temperature rise	6.22 of IEC 60688
16	Power consumption test	As per customer requirement
17	Own consumption	As per customer requirement
18	Influence of operating temperature variation	As per customer requirement
19	Shock Test	6.23 of IEC 60688
20	RS 485 Modbus communications output	As per customer requirement

Prepared by:

Checked by:

P. B. 760, ERDA Road, Makarpura Industrial Estate, Vadodara-390 010, India. Gram : ELECSEARCH EPABX: +91 (0265) 2642942, 2642964, 2642377, 2642557, 2635300, 2635253, 2657784, 2657785.

Fax : +91 (0265) 2638382.
E-mail : erda@erda.org , dir@erda.org , adir@erda.org
TEST REPORT NO FE/MTR/02/874 Detail 28

TES	ST REPORT NO. EE/	MTR/02/874 Dated: 28/9/2006	SHE	ET 3 OF 9
Sr.	Particular of	Requirement as per	Obtained value	Remarks
No.	tests & Cl. No.	specification		Remarks
1	Intrinsic error	When the transducer is under reference		Conform
	Cl.no. 4.2 of IEC	conditions, the error at any point		Comoni
	60688)	between the upper and lower nominal		
		values of the output signals shall not		
		exceed the limits of the intrinsic error		
		(±0.2%) expressed as a percentage of		
		the fiducial value.	Obtained % Error	
	Output A	Input Current (Amp) P.F	Output A	
		0 1.0	+0.03	
		1.25	+0.06	
		2.50	-0.05	
		3.75		
		5 1.0	-0.01 +0.06	
	Output B	Input Voltage (Volts)	and the second s	
	1.00.00	0	<u>Output B</u> -0.01	
		103.75	Construction of the Constr	
		207.5	-0.02	
		311.25	-0.07	
		415	-0.06	
	Output C	Input Current (Amp)	-0.09	
1 1	o utput O	0	Output C	
		1.25	-0.02	
		2.50	-0.04	
		3.75	+0.01	
		5	-0.01	
	Output D		-0.03	1
	Output D	Input Power Factor	Output D	
		0.1 Lead 0.5 Lead	+0.10	
			-0.15	
		UPF	-0.01	
		0.5 Lag	+0.11	
		0.1 Lag	-0.13	
2	Response time	Measure the response time under	Daniel C. 1	G 0
	(5.5 of IEC	1	Response time <2.4 sec. for	Conform
	60688)	reference conditions after preconditioning.	all four outputs.	
		The response time shall be <2.4sec		
3	Variations due to	(as stated by the manufacturer).	0/77	
		Nominal range of ac auxiliary supply:	%Voltage Obtained % error	Conform
Prepar	ea by:	Checked by:		

No 1462337

P. B. 760, ERDA Road, Makarpura Industrial Estate, Vadodara-390 010, India. Gram : ELECSEARCH EPABX: +91 (0265) 2642942, 2642964, 2642377, 2642557, 2635300, 2635253, 2657784, 2657785.

: +91 (0265) 2638382.

E-mail : erda@erda.org , dir@erda.org , adir@erda.org

TEST REPORT NO. EE/MTR/02/874 Dated: 28/9/2006 SHEET 4 OF 9 Sr. Particular of Requirement as per Obtained value

	Sr. No.	Particular of tests & Cl. No.	Requirement as per specification	Obtained value	Remarks
	110.	auxiliary supply	80% to 120%	variation for	Ī
		voltage (230V	Permissible variation: 50 % of class	outputs	
- 1		AC)	index $(\pm 0.1\%)$	A B	
		(6.2) of IEC	(======================================	80% -0.02 -0.01	
		60688)		120% +0.03 -0.01	
				C D	
				80% -0.01 -0.02	
				120% -0.01 -0.01	
	4	Variations due to	Nominal range of frequency of the input	Freq Obtained % error	Conform
		auxiliary supply	quantity: 90% to 110%	variation	
		frequency	Permissible variation: 50 % of class	(Hz) for outputs	
		(6.3 of IEC	index (±0.1%)	<u>A</u> <u>B</u>	
		60688)		+0.01 -0.01	
			•	55 +0.04 -	
				0.01	
				<u>C</u> <u>D</u>	
				45 -0.01 -0.01	
				55 -0.01 -	
			1	0.01	
	5	Variations due to	Nominal range of frequency of the input	Freq Obtained % error	Conform
1		frequency of the	quantity: 90% to 110%	(Hz) variation for outputs	
		input quantities	Permissible variation: 100 % of class	A B	
		(6.5 of IEC	index (±0.2%)	45 +0.02 +0.01	
		60688)		55 +0.03 +0.03	6
				<u>C</u> <u>D</u>	
7				45 -0.03 -0.01	
1		5/		55 +0.01 +0.01	
L			,		
	6		Nominal range of input voltage: 80% to	Voltage % error	Conform
		the input voltage.	120%	(%) Variation for output	
		(As per customer	Permissible variation: 50 % of class	<u>A</u>	
		requirement &	index (±0.1%)	80 -0.04	
		procedure as per		120 +0.04	
		cl.no.6.6 of IEC 60688)			
-	8	Variation due to	Nominal range of input power factor:	Chamont O 5 A	Confo
L	0	variation due to	rommai range of input power factor:	Current:0.5A	Conform

Prepared by:

No 1462338

Checked by:

P. B. 760, ERDA Road, Makarpura Industrial Estate, Vadodara-390 010, India. Gram : ELECSEARCH EPABX: +91 (0265) 2642942, 2642964, 2642377, 2642557, 2635300, 2635253, 2657784, 2657785.

: +91 (0265) 2638382.

E-mail : erda@erda.org , dir@erda.org , adir@erda.org

Sr.	Particular of	Requirement as per	Obtained value	Remarks
No.	tests & Cl. No.	specification		
	power factor. (6.8 of IEC 60688)	cosΦ = 0.5 lag to unity power factor (upf) to $cosΦ = 0.5$ lead Permissible variation: 50% of class index (±0.1%)	PowerFactor $cosΦ$ % error variation0.5lag 0.5lead-0.03 	
			0.5lead -0.08	
9	Variations due to output load (6.9 of IEC 60688)	Nominal range of output load: 10% to 100% (75Ω to 750Ω) Permissible variation: 50 % of class index ($\pm 0.1\%$)	Output load Obtained %error variation for outputs $(Ω)$ A B 75 -0.01 -0.01 750 $+0.04$ $+0.04$ $+0.01$ $(Ω)$ C D 75 $+0.08$ 0.00 750 -0.01 $+0.01$	Conform
10	Variations due to magnetic field of external origin (400AT) (6.11 of IEC 60688)	Permissible variation: 100 % of class index (±0.2%)	% error variation due to external magnetic field for outputs: A:-0.04 B:+0.02 C:-0.03 D:+0.05	Conform

Prepared by:

No 1462339

Checked by:

P. B. 760, ERDA Road, Makarpura Industrial Estate, Vadodara-390 010, India. Gram: ELECSEARCH EPABX: +91 (0265) 2642942, 2642964, 2642377, 2642557, 2635300, 2635253, 2657784, 2657785.

: +91 (0265) 2638382.

E-mail: erda@erda.org, dir@erda.org, adir@erda.org

	T REPORT NO. EE/N	ATR/02/874 Dated: 28/9/2006	SHEET	6 OF 9
Sr.	Particular of	Requirement as per	Obtained value	Remarks
No.	tests & Cl. No.	specification		
11	Variation due to self heating (6.14 of IEC 60688)	The transducer shall be at ambient temperature and shall have been disconnected for at least 4 h. The transducer shall be energized at its reference voltage (including the auxiliary supply). After 1 min and before the third minute, determine the value of the output signal. Repeat this procedure between the 30 th and 35 th minute after energization. Permissible variation: 100 % of class index (±0.2%)	Obtained % error variation for outputs A: +0.05 B: +0.03 C: +0.02 D: +0.07	Conform
12	Variations due to continuous operation (6.15 of IEC 60688)	Energize the transducer under reference conditions for at least the preconditioning period. Record the value of the output. After a convenient period of continuous operation, (6 h), note the value of the output. Permissible variation: The transducer shall continue to comply in all respects with the requirements appropriate to its accuracy class.	The transducer was subjected to the test of continuous operation. The transducer continued to comply with the requirements appropriate to its accuracy class after 6 h of continuous operation for all four outputs.	Conform
13	Variation due to common mode interference (6.16 of IEC 60688)	With the transducer at a constant value of the measurand near the upper nominal value record the value of output. Apply a voltage of 100 V r.m.s at 45 Hz to 65 Hz between either output terminal or earth and record the value of the output. Permissible variation: 100 % of class index (±0.2%)	The transducer was subjected to the test of common mode interference. Obtained % error variation for outputs A: +0.15 B: +0.01 C: +0.10 D: +0.04	Conform

Checked by:

Prepared by:

P. B. 760, ERDA Road, Makarpura Industrial Estate, Vadodara-390 010, India. Gram: ELECSEARCH EPABX: +91 (0265) 2642942, 2642964, 2642377, 2642557, 2635300, 2635253, 2657784, 2657785.

Fax : +91 (0265) 2638382.

E-mail : erda@erda.org , dir@erda.org , adir@erda.org

TEST REPORT NO. EE/MTR/02/874 Dated: 28/9/2006

		ST REPORT NO. EE/	MTR/02/874 Dated: 28/9/2006	SHEE	Γ 7 OF 9
	Sr.	Particular of	Requirement as per	Obtained value	Remarks
	No.	tests & Cl. No.	specification		remarks
	14	Influence due to overload input (As per customer requirement and procedure as per cl.no 6.18 of IEC 60688)			Conform
	a)	Continuous overload condition	Apply a overload value of input quantities for 24 hrs in a) Voltage circuits: 120% of the nominal value. Take reading at reference condition after 2hrs of cooling. b) Current circuits: 10A Take reading at reference condition after 2hrs of cooling.	Transducer test Satisfactory outputs. Transducer test Satisfactory for all four outputs. Satisfactory for all four outputs.	
ł)) 	Short term overload condition	a) Apply the overload value of the input quantity 1.5U _r , in voltage circuit No. of applications:10 Duration of one application: 10sec Interval between two successive application: 10sec	Transducer withstood the test	
			b) Apply the overload value of the input quantity 100A, in current circuit. No. of application: 5 Duration of one application: 3sec Interval between two successive application: 5 min	Transducer withstood the test	
			c) Apply the overload value of the input quantity 250A, in current circuit. No. of application:1 Duration of one application: 1sec Interval between two successive application: 1hr	Transducer withstood the test	

Prepared by:

Checked by:

No 1462341

Donih

P. B. 760, ERDA Road, Makarpura Industrial Estate, Vadodara-390 010, India. Gram: ELECSEARCH EPABX: +91 (0265) 2642942, 2642964, 2642377, 2642557, 2635300, 2635253, 2657784, 2657785.

Fax : +91 (0265) 2638382. E-mail : erda@erda.org , dir@erda.org , adir@erda.org

TEST	REPORT NO. EE/M	TTR/02/874 Dated: 28/9/2006	SHEET	8 OF 9
Sr.	Particular of	Requirement as per	Obtained value	Remarks
No.	tests & Cl. No.	specification	i a i	
140.	tosts to on Their	After the test transducer shall comply with accuracy class.	After the test the transducer complied with the requirements appropriate to its class index.	
15	Test for temperature rise (6.22 of IEC 60688)	The transducer shall be energized with each voltage circuit shall carry a voltage 1.2 times the nominal voltage and each current circuit shall carry a current of 1.1 times the nominal current. These conditions shall be maintained for at least 2 h. The temperature rise of the following parts of the transducer shall not exceed: -For input circuits: 60K -For the exterior surface: 25K	Temperature rise 2.3°C 1.4°C	Conform
16	Power consumption test (As per customer requirement)	Apparent power consumption in auxiliary supply shall not exceed 10VA.	4.95VA	Conform
17	Own consumption test (As per customer requirement)	Apparent power consumption in input voltage shall be \leq U*U/400K Ω Apparent power consumption in input current path shall be $<$ 0.3VA.	Rph:0.12 VA Yph:0.13 VA Bph:0.13 VA Rph:0.07 VA Yph:0.08 VA Bph:0.13 VA	Conform
18	Influence of operating temperature variation (As per customer requirement)	At temperature of 23°C note the readings. Keep the transducer energized at -25°C for 2hours. Note the readings. Repeat the same procedure for 55°C. Permissible variation: 100 % of class index (±0.2%/10K)	Temp. Obtained % error variation for outputs/10K A B 0 +0.02 +0.01 45 +0.04 +0.06 C D 0 +0.01 -0.01 45 -0.01 0.00	Conform

Prepared by:

P. B. 760, ERDA Road, Makarpura Industrial Estate, Vadodara-390 010, India. Gram: ELECSEARCH EPABX: +91 (0265) 2642942, 2642964, 2642377, 2642557, 2635300, 2635253, 2657784, 2657785.

: +91 (0265) 2638382.

E-mail : erda@erda.org , dir@erda.org , adir@erda.org

TEST REPORT NO. EE/N				Γ 9 OF 9
Sr.	Particular of	Requirement as per	Obtained value	Remarks
No.	tests & Cl. No.	specification		
19	Shock Test (6.23 of IEC 60688)	The test shall be carried out as per IEC 60068-2-27, under the following conditions: -Transducer in non-operating condition, without the packing -half sine pulse -peak acceleration: 50 gn -duration of pulse: 11ms Number of shock: Three shock in six direction.	Transducer was subjected to shock test	Conform
)		After the test, the transducer shall show no mechanical damage and shall operate correctly.	No internal or external damage observed in the transducer after the test. After the test transducer operated correctly.	D.
20	RS 485 Modbus communications output (As per customer requirement)	Parameters available via modbus interface at Baud rate = 9600 to be check	Satisfactory	Conform

Prepared by:

No 1462353